A Study on the Operational Characteristic of Receiver for the OOK and FSK transmission In a WDM System

WDM 시스템에서 OOK와 FSK 전송을 위한 수신기의 동작 특성에 관한 연구

  • 김선엽 (남서울대학교 전자정보통신학부 정보통신) ;
  • 나유찬 (남서울대학교 전자정보통신학부 정보통신)
  • Published : 2005.12.01

Abstract

We analyzed of the receiver which received OOK and the FSK transmission signal that were a general digital transmission technique in a WDM system. We expressed various error probability with the m which was bandwidth and a bit numerical function and carried out performance evaluation of a receiver in a performance evaluation way. When error probability was $10^{-4}$ which is m=10, as for the receive sensitivity of OOK, the $1.7{\times}10^2$, FSK got $2.2{\times}10^2$ through simulation. And the receive sensitivity of OOK and FSK was able to get each $2.15{\times}10^2$ and $3.07{\times}10^2$ when it was error probability of $10^{-9}$ which is m = 25. Transmission of 23Gb/S showed that it was possible when we does the $10^{-9}$ that was basis error probability of a light communication system with a basis through this, and a coding profit was with for and transmission capacity of 75Gb/s confirmed that it was possible if a code rate was with 0.8.

WDM 시스템에서 일반적인 디지털 전송기법인 OOK와 FSK 전송신호를 수신하는 수신기를 해석하였다. 성능평가 방법으로는 다양한 에러확률을 대역폭과 비트수의 함수인 m으로 표현하여 수신기의 성능평가를 수행하였다. 시뮬레이션 결과, $10^{-4}$의 에러확률인 m=10 인 경우 OOK 신호에 대한 수신감도는 $1.7{\times}10^2$, FSK의 경우는 $2.2{\times}10^2$, 그리고 $10^{-9}$의 에러확률인 m=25의 경우, OOK와 FSK의 경우 각각 $2.15{\times}10^2$, $3.07{\times}10^2$의 성능을 갖는 것으로 확인되었다. 이를 통해, 광통신 시스템의 기준에러확률인 $10^{-9}$을 기준으로 할 때, 23Gb/S의 전송이 가능함을 보였고, 코딩이득이 $10^{8}$이고, 코드율이 0.8인 경우에는 75Gb/s의 전송용량이 가능함을 확인하였다.

Keywords

References

  1. G. P. Agrawal, Fiber-Optic Communication Systems. Wiley Inter- science: New York, 1992
  2. W. B. Carter, President AT&T Submarine Systems Inc., 'Global under- sea fiber optic network: trends and implications,' Plenary address at the Optical Fiber Commun- ications Conference, San Jose (CA), Feb. 1996
  3. 김선엽외 5인 'Taper형 결합계수 분포를 갖는 GACC 광필터의 해석' , 한국통신학회 논문집, vol. 26, no. 1B pp. 28-36 Jan. 2001
  4. K. C. Kao and G. A. Hockham, 'Dielectric fiber surface waveguides for optical frequencies,' Proceedings of the IEEE, vol. 133, pp. 1151-1158, July. 1966
  5. F.P. Kapron, D.B. Keck and R.D. Maurer, 'Radiation losses in glass optical waveguides,' Applied Physics Letters, vol. 17, pp. 423-425, Nov. 1980 https://doi.org/10.1063/1.1653255
  6. E. Desurvire, Erbium-Doped Fiber Amplifiers. Wiley Interscience: New York, 1994
  7. B. E. Saleh and M.C. Teich, Fundamentals of Photonics. John Wiley & Sons, Inc., New York, 1991
  8. P. D Kilkelly, P. J. Chidgey and G. Hill, 'Experimental demonstration of a three channel WDM system over 110 km using superluminscent diodes,' Electronics Letters, vol. 26, no. 20, pp. 1671-1673, 1990 https://doi.org/10.1049/el:19901070
  9. Brochure of the Broadband Information Technology Program, Information Office, ARPA, US-DoD
  10. J. S. Lee, Y. C. Chung and D.J. DiGiovanni, 'Spectrum-sliced fiber amplifier light source for multichannel WDM applications,' IEEE Photonics Technology Letters, vol. 5, no. 12, pp 1458-1461, Dec. 1993 https://doi.org/10.1109/68.262573
  11. Vivek Arya and I. Jacobs, 'Capacity and power budget of spectrally-sliced WDM networks,' in Optical Fiber Conference (OFC), OSA Technical Digest Series, 1997