References
- Agresti, A., Caffo, B. and Ohman-Strickland, P. (2004). Example in which misspecification of a random effects distribution reduces efficiency, and possible remedies. Computational Statistics and Data Analysis, 47, 639-653 https://doi.org/10.1016/j.csda.2003.12.009
- Ha, I. D. and Lee, Y. (2005a). Multilevel mixed linear models for survival data. Lifetime Data Analysis, 11, 131-142 https://doi.org/10.1007/s10985-004-5644-2
- Ha, I. D. and Lee, Y. (2005b). Comparison of hierarchical likelihood versus orthodox best linear unbiased predictor approaches for frailty models. Biometrika, 92, 717-723 https://doi.org/10.1093/biomet/92.3.717
- Ha, I. D., Lee, Y. and Song, J-K (2002). Hierarchical likelihood approach for mixed linear models with censored data. Lifetime Data Analysis, 8, 163-176 https://doi.org/10.1023/A:1014839723865
- Henderson, C. R. (1975). Best linear unbiased estimation and prediction under a selection model. Biometrics, 31, 423-447 https://doi.org/10.2307/2529430
- Hougaard, P. (2000). Analysis of multivariate survival data. Springer-Verlag, New York
- Lambert, P., Collett, D., Kimber, A, and Johnson, R. (2004). Parametric accelerated failure time models with random effects and an application to kidney transplant survival. Statistics in Medicine. 23, 3177-3192 https://doi.org/10.1002/sim.1876
- Lee, Y. and NeIder, J A. (1996). Hierarchical generalized linear models (with discussion). Journal of the Royal Statistical Society, B, 58, 619-678
- Lee, Y. and Nelder, J A (2001a). Hierarchical generalised linear models: a synthesis of generalised linear models, random-effect models and structured dispersions. Biometrika, 88, 987-1006 https://doi.org/10.1093/biomet/88.4.987
- Lee, Y. and Nelder, J A. (2001b). Modelling and analysing correlated non-normal data. Statistical Modelling, 1, 3-16 https://doi.org/10.1191/147108201128050
- Neal, M. C. and Cardon, L. R. (1992). Methodology for genetic studies of twin and families. Kluwer Academic: Dordrecht
- Noh, M. and Lee, Y. (2004). REML estimation for binary data in GLMMs. A manuscript submitted for publication
- Noh, M., Ha, I. D. and Lee, Y. (2005). Dispersion frailty models and HGLMs. Statistics in Medicine, 24, in press
- Pawitan, Y., Reilly, M., Nilsson, E, Cnattingius, S. and Lichtenstein, P. (2004). Estimation of genetic and environmental factors for binary traits using family data. Statistics in Medicine, 23, 449-465 https://doi.org/10.1002/sim.1603
- Self, S. G. and Liang, K Y. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. Journal of the American Statistical Association, 82, 605-610 https://doi.org/10.2307/2289471
- Sham, P. C. (1998). Statistics in Human Genetics. Arnold: London
- Tobin, J. (1958). Estimation of relationship for limited dependent variables. Econometrica, 26, 24-36 https://doi.org/10.2307/1907382
- Vu, H. T. V. and Knuiman, M. W. (2002). A hybrid ML-EM algorithm for calculation of maximum likelihood estimates in semiparametrics shared frailty models. Computational Statistics and Data Analysis, 40, 173-187 https://doi.org/10.1016/S0167-9473(01)00099-8
- Wolfinger, R. D. (1999). Fitting nonlinear mixed models with the new NLMIXED procedure. Proceedings of the 99 Joint Statistical Meetings, 287
- Yashine, A. I., lachine, I. A. (1995). How long can humans live? Lower bound for biological limit of human longevity calculated from Danish twin data using correlated frailty model. Mechanisms of Ageing and Development, 80, 147-169 https://doi.org/10.1016/0047-6374(94)01567-6
- Yashine, A I., Iachine, I. A and Harris, J. R (1999). Half of the variation in susceptibility to mortality is genetic: findings from Swedish twin survival data. Behavior Genetics, 29, 11-19 https://doi.org/10.1023/A:1021481620934