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Genetic Mixed Effects Models for Twin Survival Data?

11 Do Ha?), Maengseok Noh3), and Sangchul Yoon%

Abstract

Twin studies are one of the most widely used methods for quantifying the
influence of genetic and environmental factors on some traits such as a life span or a
disease. In this paper we propose a genetic mixed linear model for twin survival time
data, which allows us to separate the genetic component from the environmental
component. Inferences are based upon the hierarchical likelihood (h-likelihood), which
provides a statistically efficient and simple unified framework for various random-effect
models. We also propose a simple and fast computation method for analyzing a large
data set on twin survival study. The new method is illustrated to the survival data in
Swedish Twin Registry. A simulation study is carried out to evaluate the performance.
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1. Introduction

Twin studies are useful for judging whether some trait such as a life span or a disease is
hereditary. It is interesting to estimate the relative importance of genetic and environmental
contributions to the variation of such trait. For this the data on MZ (monozygotic) and DZ
(dizygotic) twins are frequently used (Neal and Cardon, 1992) and they have been analyzed
using random-effect models, which allow to separate the effects of genetic and environment.
In this paper we are interested in genetic analysis using correlated survival time data on the
life spans of twins. For the analysis frailty models have been often used: see for example
Yashine et al. (1999) and Hougaard (2000). Here, the frailties (or random effects) act
multiplicatively on the individual hazard rate.

As an alternative to frailty models, mixed linear models. i.e., mixed effects models (MEMs)
have been proposed, in which the random effects act linearly on the individual survival time.
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MEMs have a number of advantages (Lambert et al, 2004; Ha and Lee, 2005a). For example,
the estimates from MEMs are robust against various misspecifications about the model
assumptions such as neglected covariates or misspecification of the distribution for random
effects, while in frailty models (Agresti et al., 2004) they are relatively not. In this paper we
propose a genetic MEM for analyzing twin survival data. The proposed model allows to
separate the genetic component from the environmental component. However, MEMs have
received relatively less attention in the analysis of correlated survival data because of
intractable integration required to obtain the marginal likelihood. The h-likelihood avoids such
difficulties, giving a statistically efficient and simple unified framework for various
random-effect models (Lee and Nelder, 1996; Ha et al., 2002).

The paper is organized as follows. In Section 2 we briefly describe survival data in the
Swedish Twin Register. In Section 3 we propose a genetic MEM for the twin survival data.
In Section 4 we develop a new h-likelihood procedure, leading to a simple and fast
computation for analyzing the MEM with the large twin survival data. In Section 5 the
proposed method is applied to the analysis of twin survival data, followed by a numerical
study for the performance in Section 6. Finally, some technical details are given in Appendix.

2. The Swedish Twin Survival Data

The Swedish Twin Registry is currently the largest population-based twin registry in the
world and includes informations (e.g., life-span, diseases) on twins born in Sweden since 1886.

<Table 1> Survival data in the Swedish Twin Registry, born since 1886.

Number | Pairid Zygalg  Birthday Dead Death.date Eff.date Sex
1 11 2 06JAN1900 1 03JAN1987 . 2
2 11 2 06JAN1900 1 15DEC1990 2
3 12 2 07JAN1900 1 23DEC1982 . 2
4 12 2 07JAN1900 1 20FEB1994 31AUG1997 2
17 21 1 01JAN1926 0 30AUG1997 1
18 21 1 01JAN1926 0 30AUG1997 1
19 22 4 01JAN1926 0 . 21JUN2000 1
20 22 4 01JAN1926 1 15MAY1991 . 2
21 23 2 01JAN1926 0 . 03JAN2002 1
22 23 2 01JAN1926 1 13MAR1993 . 1
78207 244783 2 31DEC1958 0 06JUN2000 1
78208 244783 2 31DEC1958 0 02FEB2001 1
78209 244784 4 31DEC1958 0 21IMAY1999 1
78210 244784 4 31DEC1958 0 30AUG1997 2

Number, number of twins; Pairid, ID of twin pairs; Zygalg (1=MZ, 2=DZ with the same gender,
4=DZ with the opposite gender); Dead (1=dead, O=alive); Death.date, the date of death; Eff.date,
the latest follow-up date; Sex (1=male, 2=female).
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This data set was recently provided by Professor Yudi Pawitan in Karolinska Institutet of
Sweden: see the website http://www.mebki.se. In Table 1 we briefly present the structure of
survival data on life-span in the Twin Registry. The survival time is defined as the time to
death (i.e. life-span time), measured in years (ages); it is calculated as (the date of death-
birthday)/365. If an individual is still alive at the end of follow-up, this life-span datum is
also right censored; in this case the date of death is replaced by the latest follow-up date.

<Table 2> Composition of the Swedish twin survival data by sex, zygosity, and
censoring status: the old cohort

Data One censored Both censored None censored Total (pairs)
Males

MZ 313 159 1174 1646

DZ 620 258 2074 2052
Females

Mz 450 396 1161 2007

DZ 931 636 2227 3844
Total 2314 1499 6636 10449

The survival data in Table 1 are represented by three different age cohorts, old, middle
and young cohorts. In this paper we consider the old cohort: see also Yashin.et al. (1999).
This cohort consists of all same-sexed pairs born between 1886 and 1925. The data used in
the analyses are summarized in Table 2, which are categorized according to the censoring
status. Each data set is in the range of a low censoring rate, about 20% ~30%. For example,
the censoring rate of male MZ twins is 19%, calculated by (313+2<159)/(2<X1646). The
information in Table 2 shows that there are more female than male twins, which may be
explained by the longer female life-span. The ratio of MZ to DZ twin pairs shows about 1:2
(i.e., MZ=3653 : DZ=6796), which confirms the mention by Sham (1998, pp. 189).

3. The Model

In this section we model a direct relationship between twin survival time and covariates
including observed or unobserved factors. Let T;jj be the survival time (e.g. age at death) for
the jth member of the ith twin pair. Let ¢; and ¢; be the random-genetic effect and the
common childhood random-environment effect for the jth individual in the 4th twin pair,

respectively. For the modelling of skewed data from Tij we use log 7;; as the responses: see

also Ha et al. (2002). Thus, we consider the MEM with two random effects: for i=1, -, ¢
and j=1,2,

log T, =3B +g;+c;+e;, 1
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where ;= (%’1)“'; a:ijp)T is a vector of fixed covariates, 8 is a px1 vector of fixed effects,
and g;; ~ IV (0:0§), c;~N (0,02) and €~ N (0,0%) are mutually independent error components.
Note here that between-pair genetic {(or environment) effects are independent, but within-pair
values are not. Following Sham (1998, pp. 189) and Pawitan et al. (2004), if the ith twin pair
is MZ (denoted by MZ,), it is assumed that

corr (g;,9) =1 and corr (¢, ¢p) =1
and if it is DZ (denoted by DZ,),

corr (g;1,92) =05 and corr (¢y,¢n) =1.

The discrepancy in genetic correlation between MZ and DZ twins allows us to separate the
genetic from the common environmental factor (Pawitan et al, 2004). Let v;; = g;; + ¢ for
j=1,2, where ¢(= ¢y =¢;) denotes the common environmental effect for the two individuals
of the ith twin pair. Then we have that
cov (gi, gin) + o

i+l

Note that p=1 for MZ; and p=(0.502+02)/(0>+0>) € [0.5,1.0] for DZ;. For the

purpose of interpretation it is convenient to define the quantity

R = __329____
g of, + of + af
known as heritability. This concept was introduced in order to measure the importance of
genetics in relation to other factors in causing the variability of a trait in a population (Sham,
1998, pp. 212).

In Appendix we show that the two random-effects MEM (1) can be written as a single
random-effect MEM:

p=corr (vy,v;) =

log 7,7]-=:1:5,B + z:jTu,- + €, (2
Here z; is the jth component of Z (p) in (A4), u; ~ N(0, 02L,) with 0% = 0>+ 0> . Here,
is the k-dimensional identity matrix such that k=1 for MZ, and k=2 for DZ;. For the

inference on parameters in model (1) we use model (2), which is the form of single
random-effect MEM by Ha et al. (2002). Thus, model (2) can be fitted using Ha et al's
(2002) method, as we shall show in Section 4.

4. Estimation Procedure

Let #;; be the censoring time corresponding to survival time T; Let Y
and 0;; = I(T;<F;), where I(- ) is the indicator function. Following Ha et al. (2002), the

h-loglikelihood h for model (2) with censoring is defined by

= min (log Ty, log Fy)
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h=h(ﬂ,ai,0§,p) = Z fuj"” 2 Lo

1]
where £;; = £y 8, Uf; PiYij 6ijlui ) =— di; {108 (27"02) + (mij)2}/2 +(1- Jij)IOg 1-o (mij)}
is the logarithm of the conditional density function for Y,-]- and 6ij given u;,
by =Ly (0%u;) = — {log det (2702L) + (u iTui/Uﬁ)}/Q
is the logarithm of the density function for %;. Here m;; = (yij_ /J‘ij)/aes
pi; = BE(log Tjlu,;) = :ci?ﬁ + z:jTui
and & is the standard normal distribution function.
Note here that E(Y|u;) # u,;, Following Ha et al. (2002), the h-likelihood method uses
the pseudo-responses y:]. such that
E(y;IU i) = Hij
Here
y:j = E(log Tij| Y= vy 5@'} u;)
= yijéij + Aij (1- 51']')
where A;; = E(log T;;llog T;; > y,,u;) = p;+0,V(m;;) and V(- ) is the hazard function for
N(0,1). Thus, for a moderate sample size the model (2) can be straightforwardly fitted using

Ha et al.’s (2002) method. However, for the large data set such as the twin survival data of
Section 2 the dimension of model matrix for random effects u;’s increases with ¢. In this

case, it is difficult to apply directly the h-likelihood procedure of Ha et al. (2002), for example
in solving the score equations of fixed- and random-effects.

We thus propose a simple and fast computation method for the large data using partition
matrix as follows. Let p be the n X 1 vector with the ijth element K,

p=2XB+Zu,
where X= (XlT RN XqT)T is the nXp model matrix for the pXxX1 fixed effects B and
Z'=BD (Zl*,-",Zq*) is nxgq Dblock diagonal matrix for g X1 random effects
u =(u1T,-~~,un)T. Here, q = g, + 2qy, q; is the number of MZ twin pairs and ¢; is that of
DZ twin pairs. Note that ¢= ¢, + g,. Let gy~ =(y’{T,--~,y;T)T be the n X1 vector with ith
vector y; = (y,, v )7. Assume that p is known. Given 8 = (0%,02)7 and y°, the maximum
h-likelihood estimators of 7= (87,u”)T becomes Henderson's (1975) mixed-model equations
with pseudo-response variables y* (Ha et al., 2002). Thus, we can easily show that substituting
X=X, X[, Z=BD(4,,%) and ¢ =% y,7)T into the mixed-model

equations reduces to the following score equations:
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XX =3 XTyi— 3 X' Zw, 3

(Z7Z + M), =Z Ty~ Z"XB (i=1,49), @)

where A = 02/05. Following Lee and Nelder (199) and Ha et al. (2002), the asymptotic variance
for B is given by the upper left-hand coner, D', of the inverse of D(h,7) = — 8°h/67%and for

the large data it can be also expressed as follows:
-1
D! =a‘:’{2 XWX, =Y, (XTWZ )G TW G + ML) (G T WX, >} ,

where W, is the ith component of W= diag (w;;), which is the n X n diagonal weight matrix
with ijth element wy; = &;+ (1 —§;)¢(my;) and €(z) = V(z){V(z) —z}.

Let £ be a likelihood with nuisance effects . Lee and Nelder (1996, 2001a) considered a
function Py (3), defined by

py (£) = [0 =+ logdet {D (6,9 )/ @m))I, _;

where D (4,9 )= — 8*/6¢* and ¢ solves 84/69 = 0; Py (£) is an adjusted profile
likelihood that eliminates the nuisance effects 1 from £ . For the estimation of the dispersion
parameters ¢ = (0%,02)7, Ha et al. (2002) used a restricted likelihood (or adjusted profile
h-likelihood), p, (h)=[h—(1/2)logdet {D(h,7)/(2n)}]l _., after eliminating fixed- and
random-effects 7. However, the estimation of @ using Pr(h) requires the inverse of
D(h,T) =— §°h /o7 Which could be computationally intensive in large samples. Recently, Noh
and Lee (2004) showed that the resulting dispersion estimators from the restricted likelihoods
p.(h) and p, (h)=[h~ (12)log det {D(h,u)/(2r)}]| are asymptotically equivalent. In
particular, the inversion of D(hu)=—0%h/bu? in p,(h) is very simple because
D(h,u) = Hy/0? is a diagonal matrix with Hy=2 TWZ + A, where A = AlL: and Iy is
the ¢° X ¢ identity matrix. In this paper, for the estimation of § we use p, (k). This leads to

u=u’

the ML (maximum likelihood) type estimators for 02 and af,, given by

-~

53‘_' 2 (y:j_ﬂij)2/{n1_(q*“’71)} and :2= E @T"Ii/(q*—’h) 5)

k¥} 1
where n, = Y wy, = o? trace {H22" ! (8}1@2/60%)} and Y, =— 0 trace {HT; ! (6}12/6012,)} The
1

formulation for the 8Hy, /807 and 8.H,,/80° terms are given in Appendix II of Ha et al. (2002)

and the trace terms in 7 and 7, are easily calculated using the partition matrix. Note that

. . “F
since we cannot observe all the y:j’s due to the censoring, we substitute estimates, say y;;,
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for them in each iteration.
The fitting algorithm is summarized as follows:
(Step 1) Given p (and hence L, (p)), estimate 7 and 8 using (3), (4) and (5).

(Step 2) Given 7 and 6 estimate p by maximizing Py (h).
(Step 3) Iterate (Step 1) and (Step 2) until convergence is achieved.
After convergence has occurred, we compute the estimates of Uf, and 03 from (A5) and those

of var (B) from D', respectively.

5. Application

To illustrate the proposed method, we analyze the twin survival data of the old cohort in
Section 2. Firstly, we analyze separately MZ and DZ twins in males (females). For this we
use the model (1) without random-environment effects c;; because of an identifiable problem

on estimation of dispersion parameters. The fitted results are given in Table 3.

<Table 3> Separate analyses using the genetic models for the old cohort

Data Model Bo(SE) o} 0. he 2. (h)

Males

Mz E 4.356(0.0026) — 0.0206 — -1829.5
GE 4.355(0.0030) 0.0069 0.0134 0.34 -2027.2

DZ E 4.345(0.0020) — 0.0215 - -3048.7
GE 4.344(0.0021) 0.0054 0.0160 0.25 -31184

.Females

MZ E 4.408(0.0024) — 0.0198 — -1434.7
GE 4.406(0.0026) 0.0051 0.0144 0.26 ~1565.6

DZ E 4.404(0.0017) — 0.0204 — ~-2764.0

L GE 4.403(0.0018) 0.0038 0.0164 0.19 -2818.1

Bs, intercept; SE, the corresponding standard error; E, logT = 3, +¢ with og = 0; GE,
logT =B, +g+e with 62 > 0; k) = o2 /(a2 4+ o?).

For testing the need for a random component (.e., Uﬁ =0), we use the deviance (—2p, (h)
in Table 3) based upon the restricted likelihood p, (h) because p,(h) and p, (k) give
asymptotically equivalent dispersion estimates. Note that p, (h) is the first-order Laplace
approximation to marginal likelihood m and that it would be natural to use p, (h) when m is
numerically hard to obtain (Lee and Nelder, 2001a). Because such a hypothesis (H: o) =0) is
on the boundary of the parameter space the critical value is x%a for a size a test. This value

results from the fact that the asymptotic distribution of likelihood ratio test is a 50:50 mixture
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of Xg and X% distributions (Self and Liang, 1987): for applications to random-effect models see

Vu and Knuiman (2002) and Ha and Lee (2005a). For example, for male MZ twins the
deviance difference between the E and GE models is 197.7, which is significant at a 5% level

(X%,o.m = 2.71 due to the half y?-distribution), indicating that the random-genetic effects are
necessary, i.e., O“Z > 0. Furthermore, we see that the random-genetic effects are all necessary
in each data set of Table 3. As expected, from the value of 3, in the GE model we observe

that the male MZ[DZ] twin tends to have shorter life span than in female MZ[DZ] twin,
respectively; for example, the estimated mean life span is exp(4.355) = 77.9(ages) for male
MZ and exp(4.406) = 81.9(ages) for female MZ. On the other hand, from the estimated
heritability hAg2 of four GE models in Table 3 we also see that in both sexes the higher

heritability in MZ over DZ is interpreted as evidence that MZ twins share more
longevity-related genetic material than DZ twins: see also Yashin and lachine (1995).
Table 4 shows the results of fitting the model (1) with a single fixed covariate z;(=1 for

MZ; and =0 for DZ;) when data for MZ and DZ twins are combined according to sexes. For

testing the need for a random component (i.e., 03 =0 or 03 =0), we again use the deviance

(—2p, (h)) as in Table 3. We first analyze the male data set. The deviance difference
between GE and GCE is 0.00, which is not significant at a 5% level (Xi(],m = 2.71), indicating
the absence of the random-environmental effects (ie., 02 = 0). The deviance difference between

CE and GCE is 37.7, indicating that the random-genetic effects are necessary, ie., 029 >0. In

addition, the deviance difference between E and GE is 264.6, indicating that the random-genetic
effects are indeed necessary with or without random-environmental effects. Again, the results
obtained from the female data set are similar to those evident in the male data set.

<Table 4> Combined (MZ and DZ) analyses using the genetic models for the old cohort

Data  Model| B4(SE) B1(SE) 7 o 2k —2.(h) AIC
Males E 4345(0.0020) 0012(0.0033)  — — 00212 — 48767 2626
CE |4344(00021) 0012000036) — 00046 00165 — -51036 37.7
GE |4343(0.0021) 0.012(0.0036) 00066 — 00144 032 -5141.3 0
GCE |4.343(0.0021) 0.012(0.0036) 0.0066 00000 00144 032 -51413 20
Females E 4.404(0.0017) 0.004(0.0032)  — — 00202 — -41979 1815
CE |4.403(0.0018) 0005(00032) — 00033 00167 — -43703 111
GE |4402(0.0018) 0005(0.0032) 00047 — 00153 024 -43814 0
GCE | 4.402(0.0018) 0.005(0.0032) 0.0047 00000 00153 024 -43814 20

B, intercept; B, MZ effect; SE, the corresponding standard error; E, MEM with 03 =02 =0; CE,
MEM with ¢} =0,0> >0; GE, MEM with 02> 0,02 =0; GCE, MEM with o2 >0, 0> > 0;
ki =o2/(0% + o2+ o?); AIC, the difference of AIC.
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To select a model among nested models a testing procedure such as the above can be used.
However, for a model selection among non-nested models such as CE and GE we can also
consider the following Akaike information criterion (AIC)

AIC = —2p, (h) + 24, (6)

where d is the number of fixed and dispersion parameters, not the number of random effects.
Since p; () and p, (h) give asymptotically equivalent dispersion estimators, the AIC of (6)
is an extension of the AIC in SAS PROC MIXED (Wolfinger, 1993) based upon restricted
likelihood for selecting a specific covariance structure in mixed linear models: for the use of
AIC based on P, (h) see Ha and Lee (2005a) and Noh et al. (2005). We may select the model
which has the smallest AIC value. For ease of comparison and ranking of candidate models,
we set the smallest value to be zero. From Table 4, for the male data the AIC chooses the

GE as the best model, with h? = 32%. Again, the GE model fits the female data best, with

i;;z = 249%. Previously, Yashin et al. (1999) analyzed a Swedish twin survival data set, similar

to the old cohort in Table 2 using various frailty models. Notice here that the current data set
is more complete due to more recent follow-up study. By using an AIC Yashin et al. (1999)
also chose a genetic frailty model, corresponding to the GE model, as a final model. However,
our estimates on h; are different from those obtained from the final model by Yashin et al
(1999), which give 58% and 39% for males and females, respectively. However, in frailty
models the estimates of dispersion parameters can be sensitive against misspecification of
random-effect distribution (Agresti et al. 2004, Ha and Lee, 2005b), and thus the values of
heritability estimated from the frailty models may not robust.

On the other hand, from the estimation of 8, in both GE models of Table 4 we observe an
interesting finding that in male twins the MZ (ﬁ: = 0.012 with SE = 0.0036) tends to have

significantly longer life span than in the DZ, but that in female twins this is no longer
significant (3, = 0.005 with SE =0.0032).

6. Simulation Study

We present a numerical study, based upon 200 replications of simulated data, to evaluate the
performance of the proposed procedure in Section 4. Using the structures of the first data set
(male twins data with a single covariate) in Table 4, the data are generated from a GCE
model (2). That is, the random effects u; i=1,---,4598, are generated from N (0,02l ).
Note here that we have u; (= u; = u;) only for the MZ; (k=1) and u,; = (i, u )T for the
DZ(k=2). Given u; the survival times T},

fi = By + By + 2 u;. We set the covariate z; to be 1 for MZ; (i =1,-+,1646) and to be 0

j=1,2 are generated from N (ll'ijj Of) with
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for DZ; (i = 1647,---,4598). For the true parameters we use the estimates from GCE model in the
third data set of Table 4; p= 0.5 (ie, 02 =0), B, = 4.343, 5, = 0.012, o2 = 0.0066, o7 = 0.0144,
Under this setting, we also set p = 0.6 to show another separation of 03 and 0> ; from (A5) this
gives 03 = 0.0053, o> = 0.0013 and hence hg = 0.0053,/(0.0053 + 0.0013 + 0.0144 ) = 0.25. The
corresponding censoring times -F;‘j/eF are generated from standard exponential distribution with
mean 1. Here, the values of parameters 0z are empirically determined to achieve approximately

the right censoring rate (around 20%). From 200 replications of simulated data we compute the mean,
the standard deviation and the mean of the estimated standard errors for B}, j=0,1. The standard

deviation (SD) for 3, j=0,1 is defined by SD =3 {(B%) — B,)%/199 }'/*, where 3 is the estimate of

B; in the ith replication and B;= Eﬁj(i)/?OO is the mean of the values of Bg"). The estimate of

o~

standard-error for J3; is obtained from DM, For the dispersion parameters the mean and standard

deviation for E), crgz, af, af and h; are also given. For the computation we used SAS/IML. The

results are summarized in Table 5.

<Table 5> Simulation results on estimation of parameters in the genetic model.

p bo A % % % Ry
True 0.50 4.343 0.012 0.0066 0 0.0144 0.32
Mean 0.505" 4.343 0.012 00065 6.6x107° 00145 0.31
SD 00023 00038 00006 6.4%X107°% 0.0005 0.026
(0.0096") (0.0022)  (0.0038)
True 06 4343 0.012 00053 00013 00144 0.25
Mean 0.602 4343 0.012 00053 00013 00144 0.25
SD 00784 00022 00037 00013 00009  0.0006 0.063
(0.0022)  (0.0038)

The simulation is conducted with 200 replications under the structure of the first data set
(n = 4598 male twin pairs with about 20% censoring) in Table 4;

Mean and SD indicate the mean and standard deviation for estimates of each parameter;
* I ML estimate and SE of p from fitting the classical Tobit model for the sample of 200

simulated estimates of p underp = 0.5; ( ): the mean of estimated SE's; h2 = o2/(02 + o7 + 07).

When p=0.5 (e, 02 =0) it is on boundary of the parameter space (0.5<p<1.0) and the

asymptotic distribution of the estimates is a 50:50 mixture between a point mass at 0.5 and a
normal random variable on the axis large than 05 (Vu and Knuiman, 2002). In the current
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simulation we also confirm that the observed proportion of 0.5 estimates out of 200 simulated

estimates of p was approximately equal to 50% because of 103/200=0.515. In case that p = 0.5, for

the dispersion parameters (o2, Ui and hg) we report the estimation results based on a ML

estimate of p using the sample of 200 simulated estimates of p. In order to obtain the ML
estimate of p, we use the classical Tobit model (i.e., a regression model with left-censoring; Tobin,
1958), which is fitted via SAS PROC LIFEREG. From Table 5 we make the following

o~ -~

observations. Overall, the interested h-likelihood estimates ,5-, 0'g2, 2 c;f and i;z work well. In

c
Table 5 SD is the estimate of the true {var(,fi})}l/2 and SE is the average of standard-error
estimates for 3] Our standard-error estimates work well as judged by the very good agreement

between SE and SD. These results suggest that the proposed method is indeed reasonable.
The proposed method of this paper is parametric. However, with the use of MEMs we see
from Table 4 that the estimates for fixed effects B are insensitive to the choice of dispersion

models E, CE, GE or GCE. Furthermore, Ha et al. (2002) showed by simulation study that the
MEMs give insensitive inferences against the misspecification of the distribution of random
effects if the censoring rate is not too high. Moreover, each data set of the old cohort in
Table 2 is overall in the range of a low censoring rate as 20% ~30%.

Appendix: Derivation of model (2)

From v;; = g;; + ¢ for 7= 1,2, the model (1) can be expressed as a simple matrix form
log T; = X8 + Zv; + ¢, , (A1)
where T; = (T, Tn)”, X, = (z;,25)7 is the 2Xp model matrix of 8, 4 is the model
matrix of v;, €; = (g,€45)7 ~ N(0,06’L) and & is the 2 X 2 identity matrix. Note here that
for the MZ; Z = (1,1)7 and v, (=v; =vy,) ~ N(0,0}), but that for the DZ; Z =1 and

v; = (v, Uig)T ~ N(0, Of,Zi) with a compound symmetric structure X, = (1 p )

p1l
Here
0.50% + o
p=corr (v;,v) = —;'2—‘::2—’ (A3)
g [

where p € [0.5,1.0]. The use of p leads to useful results. From (A3) we have that Uz is
very larger than o> (ie. 02g > 0%) as p goes to 05, but that Of, £ * as p goes to 1.0. In

particular, the model (Al) reduces to a model (1) without random-environment effects c;; if

p=05 (e, 0> =0), while it does that without random-genetic effects g; it p=10 (e,
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05 = 0). Following Lee and Nelder (2001b), the random effects v; for DZ; are assumed to
have the form L (p)u;, where u; ~ N(0,02L). For the DZ;, from Cholesky decomposition we

have a lower triangular matrix L such that X; = L L. Here, we choose
bn0-(, )
and so the random effects v; = Liu; ~ N(0, 2L, LT ). Thus, the model (A1) can be written as
log T; = X,8 + Zu,; +€;, (A4)
where u; ~ N(0,02L,), and Z = (1,1)7 and L =1 for the MZ;, and Z =L (p) and L=,
for the DZ;. Note that from (A2) and (A3) we obtain 0> and o2 as follows:
cd=0t—c! and 0l=2(p—05)d. (A5)
Then the jth element of model (A4) becomes the model (2).
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