References
- Akaike, H., (1973). Information Theory and an Extension of the Maximum Likelihood Principle, in Proceedings of the 2nd International Symposium on Information Theory, eds. B.N. Petrov and F. Csaki, Budapest: Akademia Kiado, 267-281
- Cleveland, W.S., (1979). Robust Locally Weighted Regression and Smoothing Scatterplots. Journal of the American Statistical Association, Vol. 74, 829-836 https://doi.org/10.2307/2286407
- Craven, P. and G. Wahba, (1979). Smoothing Noisy Data with Spline Functions. Numerisch mathematik, Vol. 31, 377-403
- Eppright E.S., H.M. Fox, B.A. Fryer, G.H. Lamkin, V.M. Vivian, and E.S. Fuller, (1972). Nutrition of Infants and Preschool Children in the North Central Region of the United States of America. World Review of Nutrition and Dietetics, Vol. 14, 269-332
- Eubank,R.L. (1988). In Spline Smoothing and Nonparametric Regression, 1st edition, Marcel Dekker, Inc
- Rice, J.(1984). Bandwidth Choice for Nonparametric Regression, The Annals of Statistics, Vol. 12, 1215-1230 https://doi.org/10.1214/aos/1176346788
- Schwartz, G.(1978). Estimating the Dimension of a Model, The Annals of Statistics, Vol. 6, 461-464 https://doi.org/10.1214/aos/1176344136
- Stone, C.J.(1977). Consistent Nonparametric Regression, Annals of Statistics, Vol. 5, 595-620 https://doi.org/10.1214/aos/1176343886
- Stone, M. (1974). Cross-validatory Choice and Assessment of Statistical Predictions (with discussion). Journal of the Royal Statistical Society, Series B Vol. 36, 111-147
- Yang, Y.(2000). Combining Different Procedures for Adaptive Regression. Journal of Multivariate Analysis, Vol. 74, 135-161 https://doi.org/10.1006/jmva.1999.1884
- Yang, Y. (2001). Adaptive Regression by Mixing. Journal of American Statistical Association, Theory and Methods, Vol. 96, 574-588 https://doi.org/10.1198/016214501753168262
Cited by
- Arm using individual estimator for variance vol.21, pp.1-2, 2006, https://doi.org/10.1007/BF02896421