DOI QR코드

DOI QR Code

The Development of Differentiating Method between Fresh and Frozen Beef by Using the Mitochondrial Malate Dehydrogenase Activity

Mitochondrial Malate Dehydrogenase 활성을 이용한 냉장우육과 냉동우육의 판별법 개발

  • Han, Kyu-Ho (Dept. of Food Science Biotechnology of Animal Resources, Konkuk University) ;
  • Kim, Nam-Kyu (Dept. of Food Science Biotechnology of Animal Resources, Konkuk University) ;
  • Lee, Si-Kyung (Dept. of Applied Biotechnology of Animal Resources, Konkuk University) ;
  • Cho, Jin-Kook (GRRC and Dept. of Dairy Science, Hankyong National University) ;
  • Choi, Kang-Duk (Dept. of Genomic Informatics, Hankyong National University) ;
  • Jeons, You-Jin (Dept. of Marine Biotechnology, Cheju National University) ;
  • Lee, Chi-Ho (Dept. of Food Science Biotechnology of Animal Resources, Konkuk University)
  • 한규호 (건국대학교 축산식품생물공학) ;
  • 김남규 (건국대학교 축산식품생물공학) ;
  • 이시경 (건국대학교 응용생물화학과) ;
  • 조진국 (한경대학교 낙농과학과 GRRC) ;
  • 최강덕 (한경대학교 유전체정보학과) ;
  • 전유진 (제주대학교 해양생물공학과) ;
  • 이치호 (건국대학교 축산식품생물공학)
  • Published : 2005.12.01

Abstract

The object of this study is to develop the method for differentiating fresh meat from frozen meat by using the measurement of the mitochondrial malate dehydrogenase in the Korean native cattle. The principle of this experiment is based on the fact that the enzyme proteins associated with mitochondrial membrane could be released by freezing. The methods of differentiating fresh meat from thawed, frozen meat were studied by measurements of mitochondrial malate dehydrogenase activity of meat press juice. Fresh and frozen beef were stored at 4, -4, -18 and -77$^{\circ}C$ for 15-day storage period. A meat press machine using air pressure was manufactured especially for these experiments, and sufficient amount of drip (about 0.15 mL/g) from 1.5 g of beef sample was efficiently obtained under a pressure of 8 kg/$cm^{2}$ generated by the meat pressing machine. The mitochondrial malate dehydrogenase activities of frozen meat drip i년ices stored at -18 and -77$^{\circ}C$ were significantly higher than those of fresh and frozen meat samples at -4$^{\circ}C$ (p < 0.05) during 10-min reaction period. However, the enzyme activities of the frozen meat drip juices (-18 and -77$^{\circ}C$) disappeared after 5 minutes of the reaction, which was not observed from the fresh and -4$^{\circ}C$ frozen meats. The enzyme activity maintained until 12 minutes for the fresh and -4$^{\circ}C$ frozen meats. From these results, the mitochondrial malate dehydrogenase could be considered as an indicator to differentiate fresh beef from frozen one.

본 연구는 냉장우육과 냉동우육의 판별법을 개발하기 위하여, 한우 육을 부위별(사태, 등심, 우둔, 양지 )로 구입하고 냉장(4$\pm$ 1$^{\circ}C$), 냉동(-4, -18, -77$^{\circ}C$)상태로 15일 저장하면서 압착육즙채취기를 이용하여 근육 세포내 mitochondria 막에 존재하는 mitochondrial malate dehydrogenase활성 특성을 비교 연구한 결과 다음과 같은 결과를 얻었다. 본 실험을 위하여 제작된 압착육즙채취기를 이용하여 정량적인 압착 육즙을 얻을 수 있었고, 1.5g의 우육을 이용하였을 때 0.15mL의 압착육즙을 얻었다. 냉장우육과 냉동우육 간의 mite-chondral malate dehyogenase의 각 부위별 활성은 사태의 경우 냉장우육은 23.63 Unit/mL의 활성을 나타내었고,-4$^{\circ}C$는 20.91 Unit/mL, -18$^{\circ}C$는 26.43 Unit/mL 그리고 -77$^{\circ}C$는 25.90 Unit/mL의 활성을 나타내었다. 동일한 부위에서 저장온도에 따른 효소의 활성도는 냉장우육보다 -4$^{\circ}C$를 제외한 법동 저장 온도(-18, -77$^{\circ}C$)에서 모두 유의적으로 높은 효소의 활성을 나타내었다(p < 0.05). 동일한 저장 온도에서 각부위 간에 활성의 차이점은 -77$^{\circ}C$에서 냉동 저장한 우육이 유의적 차이 없이 가장 높은 효소 활성을 나타내었고,-77$^{\circ}C$ 저장온도를 제외하고는 모두 유의성 있는 변화량을 나타내었다(p < 0.05). 실험군의 압착육즙 내 mitochondrial malate dehydrogenase의 활성은 10분간 흡광도 변화량을 조사함으로써 계산되었다. 등심을 제외한 모든 부위에서 호소반응개시 3분 후에 -4$^{\circ}C$에서 동결우육을 제외하고 동결우육의 효소 활성이 떨어지는 것을 확인할 수 있었고, 5분 반응 후에는 그 효소의 활성을 발견할 수 없었다. 냉장우육은 12분까지 활성을 측정할 수 있었다. 15일간 냉장우육 및 냉동우육을 저장 온도에 따라 저장하면서 그 활성을 측정하였는데, 저장 기간이 길어져도 그 효소활성의 차이는 유의적으로 변화하지 않고, 모든 실험군(사태, 등심, 양지, 우둔 부위 )에서 유의적으로 유사한 활성을 유지하였다(p < 0.05). 따라서 본 연구 결과로부터 mitochondrial malate dehydrogenase의 활성을 이용하여 냉장우육과 냉동우육 유무를 판별하는데 유효한 지표로 사용 가능한 것으로 사료되었다.

Keywords

References

  1. Informeat, 2000. Meatline. Monthly Meat, Seoul. October, p 89-91
  2. Moon GI, Jung IC, Moon YH. 1994. Physicochemical properties and palatability of beef during storage at $1^{\circ}C$after thawing. Korean J Food Sci 14: 85-87
  3. Wagner JR, Anon MC. 1985. Effect of freezing rate on the denaturation of myofibrillar proteins. J Food Technol 20: 735-737 https://doi.org/10.1111/j.1365-2621.1985.tb01971.x
  4. Wagner JR, Anon MC. 1986. Effect of frozen storage on protein denaturation in bovine muscle. I . Myofibrillar ATPase activity and differential scanning calorimetric studies. J Food Technol 21: 9-18 https://doi.org/10.1111/j.1365-2621.1986.tb01925.x
  5. Wagner JR, Anon MC. 1986. Effect of frozen storage on protein denaturation in bovine muscle. II. Influence on solubility, viscosity and electrophoretic behabiour of myofibrillar proteins. J Food Technol 21: 547-549 https://doi.org/10.1111/j.1365-2621.1986.tb00393.x
  6. Dobraszczyk BT, Atkins AG, Jeronimidis G. 1987. Fracture toughness of frozen meat. Meat Sci 21: 25-28 https://doi.org/10.1016/0309-1740(87)90040-4
  7. Lannari MC, Zaritzky NE. 1991. Effect of packaging and frozen storage temperature on beef pigments. 26: 629-632
  8. Jung IC, Moon YH. 1995. Change in physico-chemical properties and palatability during refrigerated storage after thawing of imported frozen beef tenderloin. Korean J Food Sci 15: 156-159
  9. Deatherage FE, Hamm R. 1960. Influence of freezing and thawing on hydration and changes of the muscle protein. Food Res 25: 623-627 https://doi.org/10.1111/j.1365-2621.1960.tb00006.x
  10. Crigler JC, Dawson LE. 1968. Cell destruction in broiler breast muscle related to freezing time. 33: 248-250 https://doi.org/10.1111/j.1365-2621.1968.tb01359.x
  11. Li KC, Heaton EK, Marine JE. 1960. Freezing chicken thighs by liquid nitrogen and sharp freezing process. J Food Technol 23: 241-243 https://doi.org/10.1111/j.1365-2621.1988.tb00575.x
  12. Anon MG, Calvelo A. 1980. Freezing rate effects on the drip loss of frozen beef. J Meat Sci 4: 1-3 https://doi.org/10.1016/0309-1740(80)90018-2
  13. Desrosier NW, Tressier DK. 1980. Fundamentals of food freezing. AVI publishing company, Inc., Connecticut Westport. p 215-239
  14. Miller AJ, Ackeman SA. 1980. Effects of frozen storage on functionality of meat for processing. J Food Sci 45: 1466-1469 https://doi.org/10.1111/j.1365-2621.1980.tb07541.x
  15. Sebranek JG, Sang PN, Rust FE, Topel DG, Kraft AA. 1980. Influence of liquid nitrogen, liquid carbon dioxide and mechanical freezing on sensory properties of ground beef patties. J Food Sci 43: 842-845 https://doi.org/10.1111/j.1365-2621.1978.tb02435.x
  16. Jeremiah LE. 1980. Effect of frozen storage and protective wrap upon the cooking losses, palatability and rancidity of fresh and cured pork cuts. J Food Sci 45: 187-190 https://doi.org/10.1111/j.1365-2621.1980.tb02573.x
  17. Neer KL, Mandigo RW. 1977. Effects of salt, sodium tripolyphosphate and frozen storage time on properties of a flaked and cured pork product. J Food Sci 42: 738-741 https://doi.org/10.1111/j.1365-2621.1977.tb12592.x
  18. Winger RJ, Fennema O. 1976. Tenderness and water holding properties of beef muscle as influence by freezing subsequent storage at $-3^{\circ}C$ or $15^{\circ}C$. J Food Sci 41: 1443-1445
  19. Berry BW. 1990. Changes in quality of all-beef and soyextended, patties as influenced by freezing rate, frozen storage temperature, and storage time. J Food Sci 4: 893-896
  20. Jeong SK. 1997. Measuring DNA damage in beef muscle caused by refrigeration, freezing and $\gamma$-irradiation by the comet assay. MS Thesis. Konkuk University
  21. Gottesmann P, Hamm R. 1983. New biochemical methods of differentiating between fresh meat and thawed, frozen meat. Fleischroirsch 63: 219-222
  22. Chen MT, Yang WD, Guo SL.. 1988. Differentiation between fresh beef and thawed frozen beef. Meat Sci 24: 223-226 https://doi.org/10.1016/0309-1740(88)90080-0
  23. Hamm R. 1979. Delocalization of mitochondrial enzymes during freezing and thawing of skeletal muscle. Advances in Chemistry Series 180. American Chem. Soc., Washington, DC. p 192-195
  24. Meijer AJ, Vandam K. 1974. The metabolic significance of anion transport in mitochondria. 346: 214-244
  25. Storey K, Bailey BE. 1988. Intracellular distribution of enzymes associate with lipogenesis and gluconeogenesis in fat body of adult cockroach. Periplaneta Insect Biochem 8: 125-131
  26. Triphathi G, Shulkla SK. 1987. Study of liver cytoplasmic and mitochondrial malate dehydrogenase of the freshwaster catfish. Clarias batrachus. Zool J Physiol 91: 447-456
  27. Beeckmans S, Kanarek L. 1981. Demonstration of physical interaction between consecutive enzymes of the citrate acid cycle and of the aspartate-malate shuttle. Eur J Biochem 117: 527-535 https://doi.org/10.1111/j.1432-1033.1981.tb06369.x
  28. Joh T, Takeshima T, Tsuzuki K, Shimada S, Tanase S, Morino Y. 1987. Cloning and sequence analysis of cDNAs encoding mammalian mitochondrial malate dehydrogenase. Biochemistry 26: 2515-2520 https://doi.org/10.1021/bi00383a017
  29. Lindvladh C, Rault M, Hagglund C, Mosbach P, Srere A. 1987. Preparation and kinetic characterization of a fusion protein of yeast mitochondrial citrate synthase and malate dehydrogenase. Biochemistry 33: 11692-11698 https://doi.org/10.1021/bi00205a004
  30. Velot C, Mixon MB, Teige PM, Srere A. 1997. Model of a quinary structure between Krebs TCA cycle enzymes. Biochemistry 36: 14271-14276 https://doi.org/10.1021/bi972011j
  31. Morgunov I, Srere A. 1998. Interaction between citrate synthase and malate dehydrogenase. J Biol Chem 273: 29540-29544 https://doi.org/10.1074/jbc.273.45.29540
  32. Englard S, Siegel L. 1969. Mitochondrial L-malate dehydrogenase of beef heart. Methods Erizymol 13: 99-106 https://doi.org/10.1016/0076-6879(69)13022-0
  33. Lusena CV. 1965. Release of enzymes from rat liver mitochondria by freezing. Canad J Biochem 43: 1787-1790 https://doi.org/10.1139/o65-199
  34. Bendall BS, DeDuve C. 1960. Tissue fractionation studies, 14. The activation of latent dehydrogenase in mitochondria from rat liver. J Biochem 74: 444-447 https://doi.org/10.1042/bj0740444
  35. Tappel AL. 1969. Effect of low temperatures and freezing on enzymes and enzyme systems. In Cryobiology. Meryman HT, ed. Academic Press, London and New York. p 163-166
  36. Luyet BJ. 1968. Low Temperature Biology of Foodstuffs. Hawthorn J. Rolfe EJ, eds. Pergamon, Oxford. p 146-158
  37. Hamrn R, Gottesmann P. 1982. Release of mitochondrial enzymes by freezing and thawing of muscle; Structural and analytical aspects. 28th European Meat Research Worker' Congress, Madrid
  38. Lee JW. 1995. Monitoring the degree of the frozen denaturation of skeletal muscle myosin by ELISA method. MS Thesis. Konkuk University
  39. Lee CH, Seo JH, Lee JY, Ryu KH. 2004. Study on the method of differentiating between fresh and frozen chicken meat by using mitochondrial malate dehydrogenase activity. J Korean J Food Sci Ani Resour 24: 151-155

Cited by

  1. Monitoring of streptomycin and dihydrostreptomycin residual levels in porcine meat press juice and muscle via solid-phase fluorescence immunoassay and confirmatory analysis by liquid chromatography after post-column derivatization vol.22, pp.3, 2008, https://doi.org/10.1002/bmc.920
  2. Application of the Mechanical High-Pressure Method Combined with High-Performance Liquid Chromatography–Tandem Mass Spectrometry for Determination of Veterinary Drug Residues in Incurred Chicken and Rabbit Muscle Tissues vol.82, pp.3, 2019, https://doi.org/10.4315/0362-028X.JFP-18-386