Effects of Ipriflavone on bone remodeling in the rat calvarial cell

백서 두개관세포에서 Ipriflavone이 골조직 개조에 미치는 영향

  • Lee, Yong-Seung (Department of Orthodontics, School of Dentistry, Chonnam National University) ;
  • Kim, Young-Jun (Department of Periodontology, School of Dentistry, Dental Science Research Institue, Chonnam National University) ;
  • Lee, Ki-Heon (Department of Orthodontics, School of Dentistry, Dental Science Research Institute, Chonnam National University) ;
  • Hwang, Hyeon-Shik (Department of Orthodontics, School of Dentistry, Dental Science Research Institute, Chonnam National University)
  • 이용승 (전남대학교 치과대학 교정학교실) ;
  • 김영준 (전남대학교 치의학연구소, 치과대학 치주과학교실) ;
  • 이기헌 (전남대학교 치의학연구소, 치과대학 교정학교실) ;
  • 황현식 (전남대학교 치의학연구소, 치과대학 교정학교실)
  • Published : 2005.08.01

Abstract

Ipriflavone (isoprofoxyisoflavone), a synthetic derivative from soy isoflavone diazein, has been shown to inhibit bone resorption and perhaps stimulate bone formation This study was performed to examine the effects of ipriflavone on the proliferation and bone remodeling in rat calvarial cells in vitro The rat calvarial cells were isolated from fetus aged 20 to 21 days and cultured In BGJb media The graded concentration of ipriflavone $(10^{-9}\;10^{-5}M)$ was administered into cultured cells. When the cell proliferation was estimated through the measurement of MTT assay, there was no increase in cellular proliferation of the rat calvarial cell at any ipriflavone concentration. The cellular activity was evaluated through the formation of mineralized nodules stained by alizarin red. The formation of mineralized nodules significantly increased at concentrations of $10^{-8}M,\;10^{-7}M\;and\;10^{-6}M$ ipriflavone. Reverse transcription-polymerase chain reaction analyses (RT-PCR) were done at 7 and 14 days after culture to detect the expression of Bone Sialoprotein (BSP), Type I Collagen (COL I) and Osteocalcin(OCN) As a result, the expressions of BSP and COL I increased on the 7th day of culture and the expression of OCN increased on the 14th day of culture. These results indicate that ipriflavone facilitates the bone remodeling process bvy promoting rat calvarial cell differentiation aid stimulating mineralization through increased expression of extracellular matrix genes. such as BSP. COL I and OCN.

본 연구는 ipriflavone(isopropoxysioflavone)의 투여가 백서 두개관세포의 증식과 골조직 개조에 미치는 영향을 알아보고자 시도되었다. 태령 20-21일째의 백서 두개관세포를 분리 배양한 후, $10^{-9}M$부터 $10^{-5}M$까지 농도의 ipriflavone을 투여하고 1일째와 3일째에 MTT분석을 시행하여 흡광도를 평가한 결과, 모든 농도에서 백서 두개관세포의 증식을 보이지 않았다. 한편 골조직 개조에 미치는 영향을 알아보기 위하여 14일째에 alizarin red 염색을 시행하여, 형성된 석회화 결절 면적을 측정하였을 때, $10^{-8}M,\;10^{-7}M,\;10^-6}M$농도를 투여한 경우 석회화 결절 형성이 유의하게 증가하였다 골아세포의 분화에 미치는 영향을 알아보기 위하여 ipriflavone을 투여하고 7일째와 14일째에 추출한 RNA를 역전사 중합효소 연쇄반응(RT-PCR)을 시켜 bone sialoprotein(BSP), type I collagen(COL I) osteocalcin (OCN) 유전자 발현을 관찰한 결과 BSP와 COL I 유전자는 배양 7일째 높은 발현을 보였고, OCN 유전자는 배양 14일째 높은 발현을 보였다. 이상의 연구결과 ipriflavone이 백서 두개관세포에서 석회화를 촉진시키고 골아세포의 분화에 관여하는 BSP, COL I 및 OCN 유전자 발현을 증가시켜 골조직의 개조를 빠르게 할 수 있음을 시사하였다.

Keywords

References

  1. Proffit WR. Retention. In: Proffit WR, Fields HW ed. Contemporary Orthodontics. 3rd ed. St. Louis: Mosby-Year Book; 2000;597-614
  2. Baurnrind S. A reconsideration of the propriety of the pressure- tension hypothesis. Am J Orthod 1969;55:12-22 https://doi.org/10.1016/S0002-9416(69)90170-5
  3. Davidovitch Z, Finkelson MD, Steigman S, Shanfeld JL, Montgomery PC, Korostoff E. Electric currents, bone remodeling, and orthodontic tooth movement II. Increase in rate of tooth movement and periodontal cyclic nucleotide levels by combined force and electric current. Am J Orthod 1980:77:33-47 https://doi.org/10.1016/0002-9416(80)90222-5
  4. Reitan K. Principles of retention and avoidance of posttreatment relapse. Am J Orthod 1969;55:776-89 https://doi.org/10.1016/0002-9416(69)90050-5
  5. Reitan K. Tissue behavior during orthodontic tooth movement. Am J Orthod 1960;46:881-900 https://doi.org/10.1016/0002-9416(60)90091-9
  6. Proffit WR. The biological basis of orthodontic therapy. In: Proffit WR, Fields HW ed. Contemporary Orthodontics. 3rd ed. St. Louis: Mosby- Year Book; 2000;296-325
  7. Adachi H, Igarashi K, Mitani H, Shinoda H. Effects of topical administration of a bisphosphonate (Risedronate) on orthodontic tooth movements in rats. J Dent Res 1994:73:1478-84 https://doi.org/10.1177/00220345940730081301
  8. Seifi M, Eslami B, Saffar AS. The effect of prostaglandin $E_2$ and calcium gluconate on orthodontic tooth movement and root resorption in rats. Eur J Orthod 2003;25:199-204 https://doi.org/10.1093/ejo/25.2.199
  9. Giunta D, Keller J, Nielsen FF, Melsen B. Influence of indomethacin on bone turnover related to orthodontic tooth movement in miniature pigs. Am J Orthod Dentofacial Orthop 1995;108:361-6 https://doi.org/10.1016/S0889-5406(95)70033-1
  10. Kehoe MJ, Cohen SM, Zarrinnia K, Cowan A. The effect of acetaminophen, ibuprofen, and misoprostol on prostaglandin $E_2$ synthesis and the degree and rate of orthodontic tooth movement. Angle Orthod 1996;66:339-49
  11. Collins MK Sinclair PM. The local use of vitamin D to increase the rate of orthodontic tooth movement. Am J Orthod Dentofacial Orthop 1988;94:278-84 https://doi.org/10.1016/0889-5406(88)90052-2
  12. Lee W. Experimental study of the effect of prostaglandin administration on tooth movement-with particular emphasis on the relationship to the method of $PGE_1$, administration. Am J Orthod Dentofacial Orthop 1990;98:231-41 https://doi.org/10.1016/S0889-5406(05)81600-2
  13. Leiker BJ, Nanda RS, Currier GF, Howes RI, Sinha PK. The effects of exogenous prostaglandins on orthodontic tooth movement in rats. Am J Orthod Dentofacial Orthop 1995;108:380-8 https://doi.org/10.1016/S0889-5406(95)70035-8
  14. Ashcraft ME, Southard KA, Tolley EA. The effect of corticosteroidinduced osteoporosis on orthodontic tooth movement. Am J Orthod Dentofacial Orthop 1992;102:310-9 https://doi.org/10.1016/0889-5406(92)70046-D
  15. Wong A, Reynolds EC, West VC. The effect of acetylsalicylic acid on orthodontic tooth movement in the guinea pig. Am J Orthod Dentofacial Orthop 1992;102:360-5 https://doi.org/10.1016/0889-5406(92)70052-C
  16. Agnusdei D, Bufalino L. Efficacy of ipriflavone in established osteoporosis and long-term safety. Calcif Tissue Int 1997;61:523-7
  17. Kovacs AB. Efficacy of ipriflavone in the prevention and treatment of postmenopausal osteoporosis. Agents Actions 1994:41:86-7 https://doi.org/10.1007/BF01986400
  18. Reginster JY. Ipriflavone: pharmacological properties and usefulness in postmenopausal osteoporosis. Bone Miner 1993;23:223-32 https://doi.org/10.1016/S0169-6009(08)80099-2
  19. Gennari C. Ipriflavone: Background. Calcif Tissue Int 1997;61:S3-4 https://doi.org/10.1007/s002239900375
  20. Kakai Y, Kawase T, Nakano T, Mikuni-Takagaki Y, Saito S. Effect of ipriflavone and estrogen on the differentiation and proliferation of osteogenic cells. Calcif Tissue Int 1992;51:S11-5 https://doi.org/10.1007/BF02180243
  21. Hagiwara H, Naruse M, Adachi C, Inoue A, Hirurna Y, Otsuka E, Naruse K, Demura H, Hirose S. Ipriflavone down-regulates endothelin receptor levels during differentiation of rat calvarial osteoblast-like cells. J Biochem 1999;126:168-73 https://doi.org/10.1093/oxfordjournals.jbchem.a022418
  22. Robey PG, Termine JD. Human bone cells in vitro. Calcif Tissue Int 1985;37:453-60 https://doi.org/10.1007/BF02557826
  23. Majeska RJ, Rodan SB, Rodan GA. Parathyroid hormone-responsive clonal cell lines from rat osteosarcoma. Endocrinology 1980:107:1494 -503 https://doi.org/10.1210/endo-107-5-1494
  24. McCarthy TL, Centrella M, Canalis E. Further biochemical and molecular characterization of primary rat parietal bone cell cultures. J Bone Miner Res 1988:3:401-8 https://doi.org/10.1002/jbmr.5650030406
  25. Joondeph DR, Riedel RA. Retention and Relapse. In: Graber TM, Vanarsdall RL ed. Orthodontics: Current Principles and Techniques. St Louis: Mosby- Year Book 1994;908-50
  26. Riedel RA. A review of the retention problem. Am J Orthod 1960;30:179-94
  27. Zachrisson BU. Clinical experience with direct-bonded orthodontic retainers. Am J Orthod 1977:71:440-8 https://doi.org/10.1016/0002-9416(77)90247-0
  28. Zachrisson BU. Bonding in orthodontics. In Graber TM, Vanarsdall RL. ed. Orthodontics: Current Principles and Techniques. 2nd ed. St. Louis: Mosby- Year Book 1994:542-626
  29. Edwards JG. A long-term prospective evaluation of the circumferential supracrestal fiberotomy in alleviating orthodontic relapse. Am J Orthod Dentofacial Orthop 1988:93:380-7 https://doi.org/10.1016/0889-5406(88)90096-0
  30. Ahrens DG, Shapira Y, Kuftinec MM, Stom D. An approach to rotational relapse. Am J Dentofac Orthod 1981;80:83-91 https://doi.org/10.1016/0002-9416(81)90198-6
  31. Sharpe W, Reed B, Subtelny JD, Polson A. Orthodontic relapse, apical root resorption, and crestal alveolar bone levels. Am J Orthod Dentofacial Orthop 1987:91:252-8 https://doi.org/10.1016/0889-5406(87)90455-0
  32. 한정우, 김선헌. 악안면 경조직 발육에 미치는 Bisphosphonate의 영향. 구강과학 2001;13:194-210
  33. Wong GL, Kocour BA. Differential sensitivity of osteoclasts and osteoblasts suggests that prostaglandin $E_1$ effects on bone may be mediated primarily through the osteoclasts. Arch Biochem Biophys 1983:22:29-35
  34. Morita I, Sakaguchi K, Kurachi T, Murota S. lpriflavone inhibits murine osteoclast formation in vitro. Calcif Tissue Int 1992:51:S7-S10 https://doi.org/10.1007/BF02180242
  35. Bonucci E, Ballanti P, Martelli A, Mereto E, Brambilla G, Bianco P, Bufalino L. Ipriflavone inhibits osteoclast differentiation in parathyroid transplanted parietal bone of rats. Calcif Tissue Int 1992:50:314-9 https://doi.org/10.1007/BF00301628
  36. Benvenuti S, Petilli M, Frediani U, Tanini A, Fiorelli G, Bianchi S, Bernabei PA, Albanese C, Brandi ML. Binding and bioeffects of ipriflavone on a human preosteoclastic cell line. Biochem Biophys Res Commun 1994:201:1084-9 https://doi.org/10.1006/bbrc.1994.1816
  37. Notoya K, Tsukuda R, Yoshida K, Taketomi S. Stimulatory effect of ipriflavone on formation of bone-like tissue in rat bone marrow stromal cell culture. Calcif Tissue Int 1992:51:S16-20 https://doi.org/10.1007/BF02180244
  38. Cheng SL, Zhang SF, Nelson TL, Warlow PM, Civitelli R. Stimulation of human osteoblast differentiation and function by ipriflavone and its metabolites. Calcif Tissue lnt 1994:55:356-62 https://doi.org/10.1007/BF00299315
  39. Civitelli R. In vitro and in vivo effects of ipriflavone on bone formation and bone biomechanics. Calcif Tissue Int 1997:61:S12-4 https://doi.org/10.1007/s002239900378
  40. Martini M, Formigli L, Tonelli P, Giannelli M, Amunni F, Naldi D, et al. Effects of ipriflavone on perialveolar bone formation. Calcif Tissue Int 1998;63:312-9 https://doi.org/10.1007/s002239900533
  41. Perugini P, Genta I, Conti B, Modena T, Pavanetto F. Periodontal delivery of ipriflavone: new chitosan/PLGA film delivery system for a lipophilic drug. Int J Pharm 2003;252:1-9 https://doi.org/10.1016/S0378-5173(02)00602-6
  42. Mosmann T. Rapid colorimetric assay for cellular growth and survival : application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55-63 https://doi.org/10.1016/0022-1759(83)90303-4
  43. 김대윤. Ipriflavone의 흰쥐 뼈 결손부 재생 효과. 전남대학교 석사학위논문 2003
  44. Nojima N, Kobayashi M, Shionome M, Takahashi N, Suda T, Hasegawa K. Fibroblastic cells derived from bovine periodontal ligaments have the phenotypes of osteoblasts. J Periodontal Res 1990;25:179-85 https://doi.org/10.1111/j.1600-0765.1990.tb01041.x
  45. Arceo N, Sauk JJ, Moehring J, Foster RA, Somerman MJ. Human periodontal cells initiate mineral-like nodules in vitro. J Periodontol 1991:62:499-503 https://doi.org/10.1902/jop.1991.62.8.499
  46. Notoya K, Yoshida K, Tsukuda R, Taketomi S. Effect of ipriflavone on expression of markers characteristic of the osteoblast phenotype in rat bone marrow stromal cell culture. J Bone Miner Res 1994;9:395 -400 https://doi.org/10.1002/jbmr.5650090315
  47. Shibano K, Watanabe J, Iwamoto M, Ogawa R, Kanamura S. Culture of stromal cells derived from medullary cavity of human long bone in the presence of 1,25-dihydroxyvitamin $D_3$, recombinant human bone morphogenetic protein-2, or ipriflavone. Bone 1998;22:251-8 https://doi.org/10.1016/S8756-3282(97)00274-3
  48. Li WS, Cheifetz S, McCulloch CAG, Sampath K, Sodek J: Effects of osteogenic protein -Ion bone matrix protein expression by fetal rat calvarial cell are differenciation stage specific. J Cell PhysioI 1996;169: 115-25 https://doi.org/10.1002/(SICI)1097-4652(199610)169:1<115::AID-JCP12>3.0.CO;2-C
  49. Prockop DJ, Kivirikko KI. Collagens: Molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 1995;64:403-34 https://doi.org/10.1146/annurev.bi.64.070195.002155
  50. Franceschi RT. The developmental control of osteoblast-specific gene expression: Role of spec ific transcriptionfactors and the extracellular matrix environment. Crit Rev Oral Biol Med 1999;10:40-57 https://doi.org/10.1177/10454411990100010201
  51. Young MF, Kerr JM, Ibaraki K, Heegaard AM, Robey PG. Structure, expression, and regulation of the major noncollagenous matrix proteins of bone. Clin Orthop 1992;281:275-94
  52. Roach HI. Why does bone matrix contain non-collagenous proteins? The possible roles of osteocalcin, osteonectin, osteopontin and bone sialoprotein in bone mineralisation and resorption. Cell Biol Int 1994;18:617-28 https://doi.org/10.1006/cbir.1994.1088
  53. Glowacki J, Rey C, Glimcher MJ, Cox KA, Lian J A role for osteocalcin in osteoclast differentiation. J Cell Biochem 1991;45:292-302 https://doi.org/10.1002/jcb.240450312
  54. Notoya K, Yoshida K, Tsukuda R, Taketomi S, Tsuda M. Increase in femoral bone mass by ipriflavone alone and in combination with 1 alpha-hydroxyvitarnin $D_3$ in growing rats with skeletal unloading. Calcif Tissue Int 1996;58:88-94 https://doi.org/10.1007/BF02529729