References
- Proffit WR. Retention. In: Proffit WR, Fields HW ed. Contemporary Orthodontics. 3rd ed. St. Louis: Mosby-Year Book; 2000;597-614
- Baurnrind S. A reconsideration of the propriety of the pressure- tension hypothesis. Am J Orthod 1969;55:12-22 https://doi.org/10.1016/S0002-9416(69)90170-5
- Davidovitch Z, Finkelson MD, Steigman S, Shanfeld JL, Montgomery PC, Korostoff E. Electric currents, bone remodeling, and orthodontic tooth movement II. Increase in rate of tooth movement and periodontal cyclic nucleotide levels by combined force and electric current. Am J Orthod 1980:77:33-47 https://doi.org/10.1016/0002-9416(80)90222-5
- Reitan K. Principles of retention and avoidance of posttreatment relapse. Am J Orthod 1969;55:776-89 https://doi.org/10.1016/0002-9416(69)90050-5
- Reitan K. Tissue behavior during orthodontic tooth movement. Am J Orthod 1960;46:881-900 https://doi.org/10.1016/0002-9416(60)90091-9
- Proffit WR. The biological basis of orthodontic therapy. In: Proffit WR, Fields HW ed. Contemporary Orthodontics. 3rd ed. St. Louis: Mosby- Year Book; 2000;296-325
- Adachi H, Igarashi K, Mitani H, Shinoda H. Effects of topical administration of a bisphosphonate (Risedronate) on orthodontic tooth movements in rats. J Dent Res 1994:73:1478-84 https://doi.org/10.1177/00220345940730081301
-
Seifi M, Eslami B, Saffar AS. The effect of prostaglandin
$E_2$ and calcium gluconate on orthodontic tooth movement and root resorption in rats. Eur J Orthod 2003;25:199-204 https://doi.org/10.1093/ejo/25.2.199 - Giunta D, Keller J, Nielsen FF, Melsen B. Influence of indomethacin on bone turnover related to orthodontic tooth movement in miniature pigs. Am J Orthod Dentofacial Orthop 1995;108:361-6 https://doi.org/10.1016/S0889-5406(95)70033-1
-
Kehoe MJ, Cohen SM, Zarrinnia K, Cowan A. The effect of acetaminophen, ibuprofen, and misoprostol on prostaglandin
$E_2$ synthesis and the degree and rate of orthodontic tooth movement. Angle Orthod 1996;66:339-49 - Collins MK Sinclair PM. The local use of vitamin D to increase the rate of orthodontic tooth movement. Am J Orthod Dentofacial Orthop 1988;94:278-84 https://doi.org/10.1016/0889-5406(88)90052-2
-
Lee W. Experimental study of the effect of prostaglandin administration on tooth movement-with particular emphasis on the relationship to the method of
$PGE_1$ , administration. Am J Orthod Dentofacial Orthop 1990;98:231-41 https://doi.org/10.1016/S0889-5406(05)81600-2 - Leiker BJ, Nanda RS, Currier GF, Howes RI, Sinha PK. The effects of exogenous prostaglandins on orthodontic tooth movement in rats. Am J Orthod Dentofacial Orthop 1995;108:380-8 https://doi.org/10.1016/S0889-5406(95)70035-8
- Ashcraft ME, Southard KA, Tolley EA. The effect of corticosteroidinduced osteoporosis on orthodontic tooth movement. Am J Orthod Dentofacial Orthop 1992;102:310-9 https://doi.org/10.1016/0889-5406(92)70046-D
- Wong A, Reynolds EC, West VC. The effect of acetylsalicylic acid on orthodontic tooth movement in the guinea pig. Am J Orthod Dentofacial Orthop 1992;102:360-5 https://doi.org/10.1016/0889-5406(92)70052-C
- Agnusdei D, Bufalino L. Efficacy of ipriflavone in established osteoporosis and long-term safety. Calcif Tissue Int 1997;61:523-7
- Kovacs AB. Efficacy of ipriflavone in the prevention and treatment of postmenopausal osteoporosis. Agents Actions 1994:41:86-7 https://doi.org/10.1007/BF01986400
- Reginster JY. Ipriflavone: pharmacological properties and usefulness in postmenopausal osteoporosis. Bone Miner 1993;23:223-32 https://doi.org/10.1016/S0169-6009(08)80099-2
- Gennari C. Ipriflavone: Background. Calcif Tissue Int 1997;61:S3-4 https://doi.org/10.1007/s002239900375
- Kakai Y, Kawase T, Nakano T, Mikuni-Takagaki Y, Saito S. Effect of ipriflavone and estrogen on the differentiation and proliferation of osteogenic cells. Calcif Tissue Int 1992;51:S11-5 https://doi.org/10.1007/BF02180243
- Hagiwara H, Naruse M, Adachi C, Inoue A, Hirurna Y, Otsuka E, Naruse K, Demura H, Hirose S. Ipriflavone down-regulates endothelin receptor levels during differentiation of rat calvarial osteoblast-like cells. J Biochem 1999;126:168-73 https://doi.org/10.1093/oxfordjournals.jbchem.a022418
- Robey PG, Termine JD. Human bone cells in vitro. Calcif Tissue Int 1985;37:453-60 https://doi.org/10.1007/BF02557826
- Majeska RJ, Rodan SB, Rodan GA. Parathyroid hormone-responsive clonal cell lines from rat osteosarcoma. Endocrinology 1980:107:1494 -503 https://doi.org/10.1210/endo-107-5-1494
- McCarthy TL, Centrella M, Canalis E. Further biochemical and molecular characterization of primary rat parietal bone cell cultures. J Bone Miner Res 1988:3:401-8 https://doi.org/10.1002/jbmr.5650030406
- Joondeph DR, Riedel RA. Retention and Relapse. In: Graber TM, Vanarsdall RL ed. Orthodontics: Current Principles and Techniques. St Louis: Mosby- Year Book 1994;908-50
- Riedel RA. A review of the retention problem. Am J Orthod 1960;30:179-94
- Zachrisson BU. Clinical experience with direct-bonded orthodontic retainers. Am J Orthod 1977:71:440-8 https://doi.org/10.1016/0002-9416(77)90247-0
- Zachrisson BU. Bonding in orthodontics. In Graber TM, Vanarsdall RL. ed. Orthodontics: Current Principles and Techniques. 2nd ed. St. Louis: Mosby- Year Book 1994:542-626
- Edwards JG. A long-term prospective evaluation of the circumferential supracrestal fiberotomy in alleviating orthodontic relapse. Am J Orthod Dentofacial Orthop 1988:93:380-7 https://doi.org/10.1016/0889-5406(88)90096-0
- Ahrens DG, Shapira Y, Kuftinec MM, Stom D. An approach to rotational relapse. Am J Dentofac Orthod 1981;80:83-91 https://doi.org/10.1016/0002-9416(81)90198-6
- Sharpe W, Reed B, Subtelny JD, Polson A. Orthodontic relapse, apical root resorption, and crestal alveolar bone levels. Am J Orthod Dentofacial Orthop 1987:91:252-8 https://doi.org/10.1016/0889-5406(87)90455-0
- 한정우, 김선헌. 악안면 경조직 발육에 미치는 Bisphosphonate의 영향. 구강과학 2001;13:194-210
-
Wong GL, Kocour BA. Differential sensitivity of osteoclasts and osteoblasts suggests that prostaglandin
$E_1$ effects on bone may be mediated primarily through the osteoclasts. Arch Biochem Biophys 1983:22:29-35 - Morita I, Sakaguchi K, Kurachi T, Murota S. lpriflavone inhibits murine osteoclast formation in vitro. Calcif Tissue Int 1992:51:S7-S10 https://doi.org/10.1007/BF02180242
- Bonucci E, Ballanti P, Martelli A, Mereto E, Brambilla G, Bianco P, Bufalino L. Ipriflavone inhibits osteoclast differentiation in parathyroid transplanted parietal bone of rats. Calcif Tissue Int 1992:50:314-9 https://doi.org/10.1007/BF00301628
- Benvenuti S, Petilli M, Frediani U, Tanini A, Fiorelli G, Bianchi S, Bernabei PA, Albanese C, Brandi ML. Binding and bioeffects of ipriflavone on a human preosteoclastic cell line. Biochem Biophys Res Commun 1994:201:1084-9 https://doi.org/10.1006/bbrc.1994.1816
- Notoya K, Tsukuda R, Yoshida K, Taketomi S. Stimulatory effect of ipriflavone on formation of bone-like tissue in rat bone marrow stromal cell culture. Calcif Tissue Int 1992:51:S16-20 https://doi.org/10.1007/BF02180244
- Cheng SL, Zhang SF, Nelson TL, Warlow PM, Civitelli R. Stimulation of human osteoblast differentiation and function by ipriflavone and its metabolites. Calcif Tissue lnt 1994:55:356-62 https://doi.org/10.1007/BF00299315
- Civitelli R. In vitro and in vivo effects of ipriflavone on bone formation and bone biomechanics. Calcif Tissue Int 1997:61:S12-4 https://doi.org/10.1007/s002239900378
- Martini M, Formigli L, Tonelli P, Giannelli M, Amunni F, Naldi D, et al. Effects of ipriflavone on perialveolar bone formation. Calcif Tissue Int 1998;63:312-9 https://doi.org/10.1007/s002239900533
- Perugini P, Genta I, Conti B, Modena T, Pavanetto F. Periodontal delivery of ipriflavone: new chitosan/PLGA film delivery system for a lipophilic drug. Int J Pharm 2003;252:1-9 https://doi.org/10.1016/S0378-5173(02)00602-6
- Mosmann T. Rapid colorimetric assay for cellular growth and survival : application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55-63 https://doi.org/10.1016/0022-1759(83)90303-4
- 김대윤. Ipriflavone의 흰쥐 뼈 결손부 재생 효과. 전남대학교 석사학위논문 2003
- Nojima N, Kobayashi M, Shionome M, Takahashi N, Suda T, Hasegawa K. Fibroblastic cells derived from bovine periodontal ligaments have the phenotypes of osteoblasts. J Periodontal Res 1990;25:179-85 https://doi.org/10.1111/j.1600-0765.1990.tb01041.x
- Arceo N, Sauk JJ, Moehring J, Foster RA, Somerman MJ. Human periodontal cells initiate mineral-like nodules in vitro. J Periodontol 1991:62:499-503 https://doi.org/10.1902/jop.1991.62.8.499
- Notoya K, Yoshida K, Tsukuda R, Taketomi S. Effect of ipriflavone on expression of markers characteristic of the osteoblast phenotype in rat bone marrow stromal cell culture. J Bone Miner Res 1994;9:395 -400 https://doi.org/10.1002/jbmr.5650090315
-
Shibano K, Watanabe J, Iwamoto M, Ogawa R, Kanamura S. Culture of stromal cells derived from medullary cavity of human long bone in the presence of 1,25-dihydroxyvitamin
$D_3$ , recombinant human bone morphogenetic protein-2, or ipriflavone. Bone 1998;22:251-8 https://doi.org/10.1016/S8756-3282(97)00274-3 - Li WS, Cheifetz S, McCulloch CAG, Sampath K, Sodek J: Effects of osteogenic protein -Ion bone matrix protein expression by fetal rat calvarial cell are differenciation stage specific. J Cell PhysioI 1996;169: 115-25 https://doi.org/10.1002/(SICI)1097-4652(199610)169:1<115::AID-JCP12>3.0.CO;2-C
- Prockop DJ, Kivirikko KI. Collagens: Molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 1995;64:403-34 https://doi.org/10.1146/annurev.bi.64.070195.002155
- Franceschi RT. The developmental control of osteoblast-specific gene expression: Role of spec ific transcriptionfactors and the extracellular matrix environment. Crit Rev Oral Biol Med 1999;10:40-57 https://doi.org/10.1177/10454411990100010201
- Young MF, Kerr JM, Ibaraki K, Heegaard AM, Robey PG. Structure, expression, and regulation of the major noncollagenous matrix proteins of bone. Clin Orthop 1992;281:275-94
- Roach HI. Why does bone matrix contain non-collagenous proteins? The possible roles of osteocalcin, osteonectin, osteopontin and bone sialoprotein in bone mineralisation and resorption. Cell Biol Int 1994;18:617-28 https://doi.org/10.1006/cbir.1994.1088
- Glowacki J, Rey C, Glimcher MJ, Cox KA, Lian J A role for osteocalcin in osteoclast differentiation. J Cell Biochem 1991;45:292-302 https://doi.org/10.1002/jcb.240450312
-
Notoya K, Yoshida K, Tsukuda R, Taketomi S, Tsuda M. Increase in femoral bone mass by ipriflavone alone and in combination with 1 alpha-hydroxyvitarnin
$D_3$ in growing rats with skeletal unloading. Calcif Tissue Int 1996;58:88-94 https://doi.org/10.1007/BF02529729