Effects of Indomethacin on the physiologic root resorption of deciduous teeth in dogs

인도메타신이 개의 유치 치근 흡수에 미치는 영향

  • Shin, Kang-Seob (Department of Orthodontics, College of Dentistry, Kyunghee University) ;
  • Kang, Yoon-Goo (Department of Orthodontics, College of Dentistry, Kyunghee University) ;
  • Lee, Ki-Soo (Department of Orthodontics, College of Dentistry, Kyunghee University)
  • 신강섭 (경희대학교 치과대학 교정학교실) ;
  • 강윤구 (경희대학교 치과대학 교정학교실) ;
  • 이기수 (경희대학교 치과대학 교정학교실)
  • Published : 2005.04.01

Abstract

This study was aimed to investigate the effects of indomethancin on physiologic root resorption and to examine the dental pulp and tissue changes around the resorbing teeth 13-14 week old six mongrel dogs were divided into 3 groups, two experimental groups administered indomethacin 2mg/kg/day and 8mg/kg/day orally two times a day for 14 days respectively. and control group administered a placebo The deciduous incisors showing root resorption were selected. fixed for 24 hrs in $10\%$ formalin solution. demineralized in $10\%$ EDTA solution. Invested in paraffin and sectioned in $5{\mu}m$ thick sections. The preparations were stained with H&E staining and Masson's trichrome staining and examined under the light microscope Observation revealed that deciduous root resorbing tissue resembles inflammatory tissue and accompanies bore remodelling. The dental pulp was formal except the area near root resorption. well organized columnar odontoblasts layer under the predentin, anud the odontoblasts near root resorption were cuboidal or flat cells in the disrupted layer under the predentin. Indomethacin administered group showed a partial decrease in the number of odontoclasts and nucleus But there was no sign of pulp change by indomethacin. These results suggest that indomethacin inhibits recruitment of odontoclasts partially and that of osteoclasts more. and so when it is administered for long periods deciduous root resorption can be delayed and eruption of the successor can be delayed for a short period.

이 연구는 흡수중인 유치를 대상으로 인도메타신이 치근흡수에 미치는 영향을 조사하고. 치근흡수에 관련된 주위 조직의 변화를 관찰하기 위하여 시행되었다. 인도메타신은 파골세포의 수를 감소시키고 골흡수를 감소시키며, 골형성도 감소시키는 것으로 보고되어 왔으나 형태와 기능이 유사하다는 파치세포에 미치는 영향에 관한 연구는 희소하다. 생후 12-13주된 잡견 6마리를 통상적 복용량인 인도메타신 2 mg/kg/day를 14일간 투여한 군과 과량의 8mg/kg/day를 14외간 투여한 군과 대조군으로 구분하였으며 흡수중인 하악 절치를 연구대상으로 하였다 연구대상 치아는 $5{\mu}m$ 두께의 절편을 만들고, H&E 중염색, Masson의 trichrome 염색을 시행하고 광학현미경으로 검경하였으며, 파치세포의 수와 핵의 수를 비교하였다. 관찰 결과 유치 치근 흡수 조직은 골개조 소견과 함께 염증소견과 유사한 소견을 보였다. 흡수중인 유치의 치수는 치근흡수부위에 가까운 조상아세포층은 변성의 소견을 보이나 멀리 떨어진 치수는 종상인 소견을 보였으며 인도메타신이 투여된 실험군에서는 파치세포의 수적 감소와 핵의 수적 감소를 미약하게 나타냈다 그러나 인도메타신이 흡수중인 치아의 치수에 미치는 영향은 관찰되지 않았다. 이상의 결과에 의하면 인도메타신은 파치세포의 수적 감소를 미약하게 일으키며 장기간의 인도메타신 투여는 유치 치근흡수의 지연을 초래할 가능성이 있음을 시사한다.

Keywords

References

  1. Peretz A. New NSAIDS: COX-1, COX-2, what about them? Rev Med Brux 1998;19:A399-402
  2. Kato M, Nishida S, Kitasato H, Sakata N, Kawai S. Cyclooxygenase -1 and cyclooxygenase-2 selectivity of non-steroidal anti-inflammatory drugs: investigation using human peripheral monocytes. J Pharm Pharmacal 2001;53:1679-85 https://doi.org/10.1211/0022357011778070
  3. Barrios-Rodiles M, Keller K, Belley A, Chadee K. Nonsteroidal antiinflammatory drugs inhibit cyclooxygenase- 2 enzyme activity but not mRNA expression in human macrophages. Biochem Biophys Res Commun 1996;225:896-900 https://doi.org/10.1006/bbrc.1996.1269
  4. Forwood MR. Inducible cyclo-oxygenase (COX-2) mediates the induction of bone formation by mechanical loading in vivo. J Bone Miner Res 1996;11:1688-93 https://doi.org/10.1002/jbmr.5650111112
  5. Kawaguchi H, Pilbeam CC, Harrison JR, Raisz LG. The role of prostaglandins in the regulation of bone metabolism. Clin Orthop 1995;313:36-46
  6. Soekanto A. Inhibition of osteoclast-like cell formation by sodiwn salicylate and indomethacin in mouse bone marrow culture. Jpn J Pharmacol 1994;65:27-34 https://doi.org/10.1254/jjp.65.27
  7. Leroux P, Saffar JL. Dose-effect and evidence of escape of inhibition after indomethacin treatment in a synchronized model of bone resorption. Agents Actions 1993;38:290-4 https://doi.org/10.1007/BF01976223
  8. Marshall MJ, Holt I, Davie MW. The number of tartrate-resistant acid phosphatase-positive osteoclasts on neonatal mouse parietal bones is decreased when prostaglandin synthesis is inhibited and increased in response to prostaglandin E2, parathyroid hormone, and 1,25 dihydroxyvitamin D3. Calcif Tissue Int 1995;56:240-5 https://doi.org/10.1007/BF00298618
  9. Shinar DM, Rodan GA. Biphasic effects of transforming growth. factor-beta on the production of osteoclast-like cells in mouse bone marrow cultnres: the role of prostaglandins in the generation of these cells. Endocrinology 1990;126:3153-8 https://doi.org/10.1210/endo-126-6-3153
  10. Flanagan AM, Stow MD, Kendall N, Brace W. The role of 1,25-dihydroxycholecalciferol and prostaglandin E2 in the regulation of hnman osteoclastic bone resorption in vitro. Int J Exp Pathol 1995;76:37-42
  11. Dieudonne SC, Foo P, van Zoelen EJ, Bnrger EH. Inhibiting and stimulating effects of TGF-beta 1 on osteoclastic bone resorption in fetal mouse bone organ cultnres. J Bone Miner Res 1991;6:479-87 https://doi.org/10.1002/jbmr.5650060509
  12. Ahlen J, Andersson S, Mukohyama H, Roth C, Backman A, Conaway HH, Lerner UH. Characterization of the bone-resorptive effect of interleukin-11 in cultnred mouse calvarial bones. Bone 2002;31:242-51 https://doi.org/10.1016/S8756-3282(02)00784-6
  13. Adachi K, Chole RA, Yee J. Indomethacin inhibition of middle ear bone resorption. Arch Otolaryngol Head Neck Snrg 1991;117:267-9 https://doi.org/10.1001/archotol.1991.01870150035002
  14. Aota S, Nakamnra T, Suzuki K, Tanaka Y, Okazaki Y, Segawa Y, Minra M, Kikuchi S. Effects of indomethacin administration on bone turnover and bone mass in adjuvant-induced arthritis in rats. Calcif Tissue Int 1996;59:385-91 https://doi.org/10.1007/s002239900144
  15. Thompson DD, Rodan GA. Indomethacin inhibition of tenotomy- induced bone resorption in rats. J Bone Miner Res 1988;3:409-14 https://doi.org/10.1002/jbmr.5650030407
  16. Torbinejad M, Clagett J, Engel D. A cat model for the evaluation of mechanisms of bone resorption: induction of bone loss by simulated immune complexes and inhibition by indomethacin. Calcif Tissue Int 1979;29:207-14 https://doi.org/10.1007/BF02408082
  17. Carter-Bartlett P, Dersot JM, Saffar JL. Periodontal and femoral bone status in periodontitis-affected hamsters receiving a high dose indomethacin treatment. J BioI Buccale 1989;17:93-101
  18. Bezerra MM, de Lima V, Alencar VB, Vieira IB, Brito GA, Ribeiro RA, Rocha FA. Selective cyclooxygenase-2 inhibition prevents alveolar bone loss in experimental periodontitis in rats. J Periodontol 2000;71:1009-14 https://doi.org/10.1902/jop.2000.71.6.1009
  19. Li L, Khansari A, Shapira L, Graves DT, Amar S. Contribution of interleukin-ll and prostaglandin(s) in lipopolysaccharide-induced bone resorption in vivo. Infect Immun 2002;70:3915-22 https://doi.org/10.1128/IAI.70.7.3915-3922.2002
  20. Giunta D, Keller J, Nielsen FF, Melsen B. Influence of indomethacin on bone turnover related to orthodontic tooth movement in miniature pigs. Am J Orthod Dentofacial Orthop 1995;108:361-6 https://doi.org/10.1016/S0889-5406(95)70033-1
  21. Zhou D, Hughes B, King GJ. Histomorphometric and biochemical study of osteoclasts at orthodontic compression sites in the rat during indomethacin inhibition. Arch Oral BioI 1997;42:717-26 https://doi.org/10.1016/S0003-9969(97)00070-8
  22. Ten Cate AR. Oral histology. 5th ed. 1998. p. 300-5
  23. Addison WC. beta-Hydroxybutyrate dehydrogenase activity in hwnan and kitten odontoclasts and kitten osteoclasts. Histochem J 1978;10:731-7 https://doi.org/10.1007/BF01003122
  24. Addison WC. Enzyme histochemical characteristics of hwnan and kitten odontoclasts and kitten osteoclasts: a comparative study using whole cells. Histochem J 1979;11:719-35 https://doi.org/10.1007/BF01004735
  25. Bhaskar SN(ed). Orban's oral histology and embryology. 8th ed. St Louis, CV Mosby, 1976
  26. Oberszstyn A. Experimental investigation of factors causing resorption of deciduous teeth. J Dent Res 1963;42:660-74 https://doi.org/10.1177/00220345630420021401
  27. Nazif MM, Zullo T, Paulette S. The effects of primary molar ankylosis on root resorption and the development of permanent successors. ASDC J Dent Child 1986;53:115-8
  28. Jensen BL, Kreiborg S. Development of the dentition in cleidocranial dysplasia. J Oral Pathol Med 1990:19:89-93 https://doi.org/10.1111/j.1600-0714.1990.tb00803.x
  29. Addison WC. The nwnber of parathyroid hormone on the nwnbers of nuclei in feline odontoclasts in vivo. J Periodont Res 1980;15:536-43 https://doi.org/10.1111/j.1600-0765.1980.tb00311.x
  30. Addison WC. The distribution of nuclei in human ododntocalsts in whole cell preparations. Archs Oral BioI 1978;23:1167-71 https://doi.org/10.1016/0003-9969(78)90126-7
  31. Domon T, Osanai M, Yasuda M, Seki E, Takahashi S, Yamamoto T, Wakita M. Mononuclear odontoclast participation in tooth resorption. The distribution of nuclei in human odontoclasts. Anat Rec 1997;249:449-57 https://doi.org/10.1002/(SICI)1097-0185(199712)249:4<449::AID-AR4>3.0.CO;2-M
  32. Ten Cate AR, Anderson RD. An ultrastructural study of tooth resorption in the kitten. J Dent Res 1986;65:1087-93 https://doi.org/10.1177/00220345860650080901
  33. Sasaki T, Shimizu T, Suzuki H, Watanabe C. Cytodifferentiation and degeneration of odontoclasts in physiologic root resorption of kitten deciduous teeth. Acta Anat (Basel) 1989;135:330-40 https://doi.org/10.1159/000146777
  34. Sasaki T, Shimizu T, Watanabe C, Hiyoshi Y. Cellular roles in physiological root resorption of deciduous teeth in the cat. J Dent Res 1990;69:67-74 https://doi.org/10.1177/00220345900690011101
  35. Francini E, Mancini G, Vichi M, Tollaro I, Romagnoli P. Microscopical aspects of root' resorption of human deciduous teeth. ltal J Anat Embryol 1992;97:189-201
  36. Sahara N. Cellular events at the onset of physiological root resorption in rabbit deciduous teeth. Anat Rec 2001;264:387-96 https://doi.org/10.1002/ar.10017
  37. Rolling I. Histomorphometric analysis of primary teeth during the process of resorption and shedding. Scand J Dent Res 1981;89:132-42
  38. Sari S, Aras S, Gunhan O. The effect of physiological root resorption on repair potential of primary tooth pulp. J CJin Pediatr Dent 1999;23:227-33
  39. Sari S, Aras S, Gunhan O. The physiological root resorption on the histological structure of primary tooth pulp. J Clin Pediatr Dent 1999;23:221-5
  40. Eronat C, Eronat N, Aktug M. Histological investigation of physiologically resorbing primary teeth using Ag-NOR staining method. Int J Pediatr Dent 2002;12:207-14 https://doi.org/10.1046/j.1365-263X.2002.00337.x
  41. Lasfargues JJ, Saffar JL. Inhibition of prostanoid synthesis depresses alveolar bone resorption but enhances root resorption in the rat. Anat Rec 1993;237:458-65 https://doi.org/10.1002/ar.1092370404
  42. Hammarstrom L, Lindskog S. Factors regulating and modifying dental root resorption. Proc Finn Dent Soc 1992;88 Suppl 1:115-23