분광광도계를 이용한 점토함량 분석

Use of Spectrophotometry for Quantitative Determination of Soil Clay Content

  • 박순남 (서울시립대학교 자연과학대학 환경원예학과) ;
  • 김계훈 (서울시립대학교 자연과학대학 환경원예학과) ;
  • 강지영 (서울시립대학교 농업생명과학대학 농업과학공동기기센터)
  • Park, Soon-Nam (Department of Environmental Horticulture, The University of Seoul) ;
  • Kim, Kye-Hoon (Department of Environmental Horticulture, The University of Seoul) ;
  • Kang, Ji-Young (National Instrumentation Center for Environmental Management)
  • 발행 : 2005.06.30

초록

토양 입경분석 중 점토함량 분석과정은 특히 시간과 공간을 많이 필요로 한다. 본 연구는 분광광도계(spectrophotometer)를 이용하여 점토함량을 측정하는 방법을 개발하고자 수행되었다. 분광광도계를 이용한 점토함량 분석방법은 다음의 4단계를 통해 개발되었다. 첫째, 분광광도계로 점토 분석이 가능한 최적파장을 선택하기 위해 표준 점토 시료(kaolinite, vermiculite, illite, montmorillonite)를 이용하여 점토종류에 따른 파장별 흡광도를 측정하였으며, 최적 파장으로 500 nm를 선정하였다. 둘째, 분광광도계를 이용한 재현성이 높은 분석 방법은 250 ml 삼각 플라스크에 풍건 토양과 분산액을 넣고 12시간 진탕(130 rpm)하여 토양시료를 분산시킨 후 용기를 30초간 상하로 흔들어 미리 설치한 cell에 4 ml를 피펫으로 취하여 즉시 흡광도를 측정하는 것으로 조사되었다. 셋째, 점토함량 정량 분석을 위해 검정선(calibration curve)을 작성하였다. 넷째, 분광광도법(spectrophotometry)으로 분석된 동일 시료의 점토함량을 표준 방법으로 알려진 피펫법(pipet method)으로 분석한 후 회귀분석을 실시하여 분광광도법으로 측정한 점토함량을 피펫법으로 분석한 결과로 환산하는 환산식을 유도하였다. 분광광도법으로 측정한 점토함량은 토양시료내에 포함된 유기물 함량과도 상관관계가 조사되어 피펫법으로 측정한 점토함량과 분광광도법으로 측정한 점토함량, 유기물 함량간의 다중 회귀분석을 실시하였다. 그 결과 회귀방정식은 $y\;=\;38.03x_1-0.17x_2-1.17$(y = 피펫법으로 측정한 점토함량(%); $x_1$ = 분광광도법으로 측정한 점토함량(%); $x_2$ = 유기물 함량($g{\cdot}kg^{-1})$)이었으며, 상관계수는 $0.984^{**}$로 두 방법사이에 높은 상관관계가 있는 것으로 조사되었다. 여기서 유도된 회귀방정식을 프로그램화하여 컴퓨터나 분석기기에 입력시 시간과 공간을 절약하고 신속하고 정확하게 점토함량을 분석할 수 있을 것으로 판단된다.

This study was conducted to develop a method for the quantitative determination of soil clay content by spectophotometry. The optimum wavelength obtained with reference clay minerals for spectrophotometry was 500 nm. For the proposed spectrophotometry, 0.5 g of soil sample was put in the 250 ml Erlenmeyer flask and 100 ml dispersing agent was added. After shaking the flask at 130 rpm with a mechanical shaker overnight, the flask was removed from the shaker and was shaken up-and-down for 30 seconds. With a micro-pipet, 4 ml of the suspension was transferred into the previously-inserted cell and the absorbance was measured instantly. Results by the spectrophotometry for clay content analysis were compared with those by the conventional sedimentation technique (the pipet method). The proposed equation was $y\;=\;38.03x_1-0.17x_2-1.17$, where y, $x_1$, and $x_2$ were clay content (%) by the pipet method, water content corrected clay content (%) by spectrophotometry, and organic matter content ($g{\cdot}kg^{-1}$), respectively. The regression coefficient for the equation was $r\;=\;0.984^{**}$, indicating highly significant correlation between the results of the two methods.

키워드

참고문헌

  1. Bouyoucos, G. J. (1933) A comparison between the pipette method and the hydrometer method for making mechanical analysis of soils, with new directions. Soil Sci. 38, 335-343
  2. Daddah, M. T. (1974) The hydrometer method for detailed particle-size anslysis: 1. Graphical interpretation of hydrometer readings and test of method. Soil Sci. 118, 102-108 https://doi.org/10.1097/00010694-197408000-00007
  3. Gee, G. W. and Bauder, J. W. (1986) In Methods of Soil Analysis: Part1, Particle size analysis. A. Klute (ed.) (2nd ed.), American Society of Agronomy, Madison, WI. pp. 383-411
  4. Hyun, B. K., Kim, M. S., Eom, K. C. and Jo, I. S. (2000) A more simplified hydrometer method for soil texture analysis. J. Kor. Soc. Soil Sci. Fert. 33, 153-159
  5. Jo, I. S., Kim, L. Y., Ryu, K. S., Im, J. N., Um, K. T. and Kwag, Y. S. (1984) Design and performance of the modified hydrometer for the rapid measurement of clay content in soils. J. Kor. Soc. Soil Sci. Fert. 17, 325-329
  6. Kilmer, V. J. and Alexander, L. T. (1949) Methods of making mechanical analyses of soils. Soil Sci. 68, 15-24 https://doi.org/10.1097/00010694-194907000-00003
  7. Liu, T. K., Odell, R. T., Etter, W. C. and Thornburn, T. H. (1966) A comparison of clay contents determined by hydrometer and pipette methods using reduced major axis analysis. Soil Sci. Soc. Am. Proc. 30, 665-669
  8. Miller, W. P. and Miller, D. M. (1987) A micro-pipette method for soil mechanical analysis. Commun. Soil Sci. Plant Anal. 18, 1-15
  9. Sur, H. S. and Kukal, S. S. (1992) A modified hydrometer procedure for particle size analysis. Soil Sci. 153, 1-4 https://doi.org/10.1097/00010694-199201000-00001
  10. Allen, T. (1997) In Particle size measurement. (5th ed.), Chapman and Hall, New York
  11. Beuselinck, L., Govers, G., Poesen, J. and Degraer, G. (1998) Grain-size analysis by laser diffractometry: comparison with the sieve-pipette method. Catena 32, 193-208 https://doi.org/10.1016/S0341-8162(98)00051-4
  12. Buurman, P., Pape, T. and Muggler, C. C. (1997) Laser grainsize determination in soil genetic studies 1. Practical problems. Soil Sci. 162, 211-218 https://doi.org/10.1097/00010694-199703000-00007
  13. Coakley, J. P. and Syvitski, J. P. M. (1991) In Principles, methods, and application of particle size analysis: Sedigraph technique. J. P. M. Syvitski (ed.), Cambridge University Press, New York, pp. 130-142
  14. Muggler, C. C., Pape, T. and Buurman, P. (1997) Laser-grain size determination in soil genetic studies 2. Clay content, clay formation, and aggregation in some Brazilian oxisols. Soil Sci. 162, 219-228 https://doi.org/10.1097/00010694-199703000-00008
  15. Naime, J. M., Vaz, C. M. P. and Macedo, A. (2001) Automated soil particle size analyzer based on gamma-ray attenuation. Comput. Electron. Agric. 31, 295-304 https://doi.org/10.1016/S0168-1699(00)00188-5
  16. Pennington, K. L. and Lewis, G. C. (1979) A comparison of electronic and pipet methods for mechanical analysis of soils. Soil Sci. 128, 280-284 https://doi.org/10.1097/00010694-197911000-00004
  17. Welch, N. H., Allen, P. B. and Galindo, D. J. (1979) Particlesize analysis by pipette and SediGraph. J. Environ. Qual. 8, 543-546 https://doi.org/10.2134/jeq1979.00472425000800040020x
  18. Rural Department Administration (2000) Methods of soil and plant analysis. National Institute of Agricultural Science and Technology, Suwon, Korea
  19. Skoog, D. A., Holler, F. J. and Nieman, T. A. (1998) Principles of instrumental analysis. (5th ed.), Harcourt Brace and Company. pp. 355-416
  20. Mun, H. S. (1996) In Clay mineralogy. Mineumsa, Seoul