3D-QSAR on the Herbicidal Activities of New 2-(4-(6-chloro-2-benzoxazolyloxy)phenoxy)-N-phenylpropionamide Derivatives

새로운 2-(4-(6-chloro-2-benzoxazolyloxy)phenoxy)-N-phenylpropionamide 유도체들의 제초활성에 관한 3차원적인 정량적 구조와 활성과의 관계

  • Sung, Nack-Do (Division of Applied Biology and Chemistry, College of Agriculture and Life Science, Chungnam National University) ;
  • Jung, Hoon-Sung (Division of Applied Biology and Chemistry, College of Agriculture and Life Science, Chungnam National University)
  • 성낙도 (충남대학교 농업생명과학대학 응용생물화학부) ;
  • 정훈성 (충남대학교 농업생명과학대학 응용생물화학부)
  • Published : 2005.09.30

Abstract

Three-dimensional quantitative structure-activity relationships (3D-QSARs) for the herbicidal activities against pre-emergence barnyard grass (Echinochloa crus-galli) by new 2-(4-(6-chloro-2-benzoxazolyloxy)phenoxy)-N-phenylpropion amide derivatives were studied quantitatively using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methodologies. The best CoMFA model (AI-2) and CoMSIA model (AII-4) were derived from an atom based fit alignment and a combination of CoMFA fields. The herbicidal activities from CoMFA and CoMSIA contour maps showed that the activity will be able to be increased according to the substituents variation on the N-phenyl ring.

새로운 2-(4-(6-chloro-2-benzoxazolyloxy)phenoxy)-N-phenylpropionamide 유도체들의 구조 변화에 따른 발아 전, 논피(Echinochloa crus-galli)에 대한 제초활성과의 3D-QSAR 관계를 상이한 정렬방법에 따라 비교 분자장 분석(CoMFA)과 비교분자 유사성 지수분석(CoMSIA) 방법으로 연구하였다. 가장 양호한 3D-QSAR 모델은 atom based fit 정렬과 CoMFA장과 CoMSIA장의 조합 조건에서 유도된 CoMFA 모델(AI-2)과 CoMSIA 모델(AII-4)이었다. CoMFA 및 CoMSIA 등고도로부터 제초활성은 N-phenyl 고리 상 치환기의 구조변화로 개선될 수 있었다.

Keywords

References

  1. Copping, L. G. and Hewitt, H. G. (1998) In Chemistry and Mode of Action of Crop Protection Agents. The Royal Society of Chemistry, London, pp. 17-44
  2. Harwood, J. L. (1991) In Target Sites for Herbicide Action; Lipid Synthesis. Kirkwood, R. C. (ed.) Plenum Press, New York and London, pp. 57-91
  3. Kuk, Y. I., Jingrui, W., Jeffrey, F. D. and Kriton, K. H. (1999) Mechanism of Fenoxaprop Resistance in an Accession of Smooth Crabgrass (Digitaria ischaemum) Pesti. Biochem. Physiol. 64, 112-123 https://doi.org/10.1006/pest.1999.2417
  4. Lichtenthaler, H. K. (1990) Mode of action of herbicides affecting acetyl-CoA carboxylase and fatty acid biosynthesis. Z. Naturforsch., C: J. Biosci. 45C, 521-528
  5. Incledon, B. J. and Hall, J. C. (1997) Acetyl-CoA carboxylase: Quaternary structure and inhibition by graminicidal herbicides. Pestic. Biochem. Physiol. 57, 255-271 https://doi.org/10.1006/pest.1997.2279
  6. Hoppe, H. H. and Zacher, H. (1985) Inhibition of fatty acid biosynthesis in isolated bean and maize chloroplasts by herbicidal phenoxy-phenoxypropionnic acid derivatives and structurally related compounds. Pestic. Biochem. Physiol. 24, 298-305 https://doi.org/10.1016/0048-3575(85)90140-3
  7. Ma, S. Y. and Chun, J. C. (1997) Physiological factors causing interspecific differential phytotoxicity to fenoxaprop-ethyl. Korean. J. Pestic. Sci. 1, 52-60
  8. Sung, N. D., Lee, S. H., Chang, H. S., Kim, D. W. and Kim, J. S. (1999) Structure-activity relationships in the selective herbicidal activity between rice plant and barnyard grass by the N-phenyl substituents in 2-(4-(6-chloro-2-benzoxa-zolyloxy) phenoxy)-N-phenylpropionamide derivatives. Korean. J. Pestic. Sci. 3, 11-19
  9. Sung, N. D., Lee, S. H., Ko, Y. K., Lee, K. M., Kim, D. W. and Kim, T. J. (2000) Structure activity relationship on the herbicidal activity by the N-phenyl substituents of 2-(4-(6-chloro- 2-benzoxazolyloxy)phenoxy)-N-phenylpropionamide derivatives in down land. Korean. J. Pestic. Sci. 4, 21-28
  10. Kubinyi, H (1993) In 3D QSAR Drug Design, Theory, Methos and Applications, ESCOM. Leiden
  11. Cramer, R. D., Patterson, D. E. and Bunce, J. D. (1988) Comparative molecular field analysis (CoMFA), 1. Effect of shape on the binding of steroids to carrier proteins, J. Am. Chem. Soc. 110, 5959-5967 https://doi.org/10.1021/ja00226a005
  12. Klebe, G., Abraham, U. and Mietzner, T. (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity., J. Med. Chem., 37, 4130-4146 https://doi.org/10.1021/jm00050a010
  13. Tripos, Sybyl (2001) In Molecular Modeling and QSAR software on CD-Rom (Ver. 7.0), Tripos Associates, Inc., Suite 303, St. Louis, MO
  14. Kerr, R. (1994) Parallel helix bundles and ion channels: molecular modeling via simulated annealing and restrained molecular dynamics. Biophys. J. 67, 1501-1515 https://doi.org/10.1016/S0006-3495(94)80624-1
  15. Purcell, W. P. and Singer, J. A. (1967) A brief review and table of semiempirical parameters used in the Huckel molecular orbital method. J. Chem. Eng. Data. 122, 235-246
  16. Klebe, G. (1993) In 3D-QSAR Drug Design, Theory, Methods and Applications: Structural Alignment of Molecules. Kubinyi, H. (ed.) pp. 173-199, ESCOM. Leiden
  17. Marshall, G. R., Barry, C. D., Bosshard, H. E., Dammkoehler, R. A. and Dunn, D. A. (1979) In Computer-assisted drug design: The conformational parameter in drug design; active analog approach.. Olsen, E. C. and Christoffersen, R. E. (ed.), pp. 205-226, Ammerican Chemical Society, Washington, D.C
  18. Clark, M., Cramer III, R. D., Jones, D. M., Patterson, D. E. and Simeroth, P. E. (1990) Comparative molecular field analysis (CoMFA). 2. Toward its use with 3D-structural databases, Tetrahedron Comput. Methodol. 3, 47-59
  19. Sobhia, M. E. and Bharatam, P. V. (2005) Comparative molecular similarity indices analysis (CoMSIA) studies of 1,2- naphthoquinone derivarives as PTP1B inhibitors. Bioorg. Med. Chem. 13, 2331-2338 https://doi.org/10.1016/j.bmc.2004.12.039
  20. Stahle, L. and Wold, S. (1988) Multivariate data analysis and experimental design in biomedical research. Prog. Med. Chem. 25, 291-338 https://doi.org/10.1016/S0079-6468(08)70281-9