토마토 뿌리조직 $H^+-ATPase$ 활성에 미치는 Thapsigargin의 저해효과

Inhibitory Effect of Thapsigargin on the Activities of $H^+-ATPases$ in Tomato Roots

  • 조광현 (충북대학교 농업생명환경대학 농화학과) ;
  • 김영기 (충북대학교 농업생명환경대학 농화학과)
  • Cho, Kwang-Hyun (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Kim, Young-Kee (Department of Agricultural Chemistry, Chungbuk National University)
  • 발행 : 2005.09.30

초록

Thapsigargin은 동물조직에서 ER/SR-type $Ca^{2+}-ATPase$의 선택적 저해제로서, 토마토 뿌리조직으로부터 분리한 마이크로솜에서 ATPase의 특성을 조사하기 위하여 사용되었다. Thapsigargin은 마이크로솜 ATPase 활성을 농도의존적으로 저해하였으며, $10\;{\mu}M$ 농도에서 총활성의 약 30%를 저해하였다. 이것은 뿌리조직에서 $Ca^{2+}-ATPase$의 활성이 매우 낮다는 것을 고려할 때, thapsigargin이 뿌리조직의 주된 ATPase 활성인 원형질막 및 액포막의 $H^+-ATPase$ 활성을 저해할 가능성을 보인다. Thapsigargin의 효과는 ${NO_3}^-$를 사용하여 액포막 $H^+-ATPase$ 활성을 저해하였을 때 현저하게 감소하였다. 그러나, thapsigargin의 효과는 원형질막의 $H^+-ATPase$ 활성에는 영향을 미치지 않아, thapsigargin이 토마토 뿌리조직에서 액포막 $H^+-ATPase$를 선택적으로 저해함을 보여준다.

Thapsigargin is a specific antagonist of SR/ER-type $Ca^{2+}-ATPase$ in animal tissue, and it was used to characterize the microsomal ATPases prepared from the roots of tomato. When $10\;{\mu}M$ thapsigargin was added, it inhibited the microsomal ATPase activity by 30%. The thapsigargin-induced inhibition was dose-dependent. Since the activity of $Ca^{2+}-ATPase$ is very low in the roots of tomato tissue, it is possible that thapsigargin inhibits the activities of major $H^+-ATPases$ located in plasma and vacuolar membranes. The inhibitory effect of thapsigargin was reduced when the vacuolar $H^+-ATPase$ activity was inhibited by ${NO_3}^-$. However, the effect of thapsigargin was not observed on the $H^+-ATPase$ activity located in the plasma membrane. These results suggest that thapsigargin inhibits the vacuolar $H^+-ATPase$ activity in the roots of tomato.

키워드

참고문헌

  1. Michelet, B. and Boutry, M. (1995) The plasma membrane $H^{+}$- ATPase: a highly regulated enzyme with multiple physiological functions. Plant Physiol. 108, 1-6
  2. Ward, J. M. and Sze, H. (1992) Proton transport activity of the purified vacuolar $H^{+}$-ATPase from oats. Plant Physiol. 99, 925- 931 https://doi.org/10.1104/pp.99.3.925
  3. Palmgren, M. G. (2001) Plant plasma membrane $H^{+}$-ATPases: powerhouses for nutrient uptake. Annu. Rev. Plant Physiol. Mol. Biol. 52, 817-845 https://doi.org/10.1146/annurev.arplant.52.1.817
  4. Lytton, J., Westlin, M. and Hanley, M. R. (1991) Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J. Biol. Chem. 266, 17067-17071
  5. Thomson, L. J., Hall, J. L. and Williams, L. E. (1994) A study of the effect of inhibitors of the animal sarcoplasmic/ endoplasmic reticulum-type calcium pumps on the primary $Ca^{2+}$-ATPases of red beet. Plant Physiol. 104, 1295-1300
  6. Ordenes, V. R., Reyes, F. C., Wolff, D. and Orellana, A. (2002) A thapsigargin-sensitive $Ca^{2+}$pump is present in the pea Golgi apparatus membrane. Plant Physiol. 129, 1820-1828 https://doi.org/10.1104/pp.002055
  7. Liang, F., Cunningham, K. W., Harper, J. F. and Sze, H. (1997) ECA1 complements yeast mutants defective in $Ca^{2+}$ pumps and encodes an endoplasmic reticulum-type $Ca^{2+}$-ATPase in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 94, 8579- 8584
  8. Cho, K. H., Sakong, J. and Kim, Y. K. (1998) Characterization of microsomal ATPases prepared from tomato roots. Agric. Chem. Biotechnol. 41, 130-136
  9. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265-275
  10. Niggli, V., Penniston, J. T. and Carafoli, E. (1979) Purification of the ($Ca^{2+}-Mg^{2+}$)-ATPase from human erythrocyte membranes using a calmodulin affinity column. J. Biol. Chem. 254, 9955- 9958
  11. Fabiato, A. (1988) Computer programs for calculating total from free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. Methods Enzymol. 157, 378-417 https://doi.org/10.1016/0076-6879(88)57093-3
  12. Palmgren, M. G., Askerlund, P., Fredrikson, K., Widell, S., Sommarin, M. and Larsson, C. (1990) Sealed inside-out and right-side-out plasma membrane vesicles. Plant Physiol. 92, 871-880 https://doi.org/10.1104/pp.92.4.871
  13. Bennett, A. B., O'Neill, S. D. and Spanswick, R. M. (1984) $H^{+}$- ATPase activity from storage tissue of Beta vulgaris. Plant Physiol. 74, 538-544 https://doi.org/10.1104/pp.74.3.538
  14. Bush, D. S. (1995) Calcium regulation in plant cells and its role in signaling. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 95-122 https://doi.org/10.1146/annurev.pp.46.060195.000523
  15. Sze, H., Liang, F., Whang, I., Curran, A. C. and Harper, J. F. (2000) Diversity and regulation of plant $Ca^{2+}$ pumps: insights from expression in yeast. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 433-462 https://doi.org/10.1146/annurev.arplant.51.1.433
  16. Wuytack, F., Papp, B., Verboomen, H., Raeymaekers, L., Dode, L., Bobe, R., Enouf, J., Bokkala, S. and Casteels, R. (1994) A sarco/endoplasmic reticulum $Ca^{2+}$-ATPase 3-type $Ca^{2+}$ pump is expressed in platelets, in lymphoid cells, and in mast cells. J. Biol. Chem. 269, 1410-1416
  17. Caspersen, C. and Treiman, M. (1995) Thapsigargin discriminates strongly between $Ca^{2+}$-ATPase phosphorylated intermediates with different subcellular distributions in bovine adrenal chromaffin cells. FEBS Lett. 377, 31-36 https://doi.org/10.1016/0014-5793(95)01304-0
  18. Rasi-Caldogno, F., Pugliarello, M. C., Olivari, C. and Michelis, M. I. D. (1989) Identification and characterization of the $Ca^{2+}$- ATPase which drives active transport of $Ca^{2+}$ at the plasma membrane of radish seedlings. Plant Physiol. 90, 1429-1434 https://doi.org/10.1104/pp.90.4.1429
  19. Giannini, J. L., Ruiz-Cristin, J. R. and Briskin, D. P. (1987) Calcium transport in sealed vesicles from red beet (Beta vulgaris L.) storage tissue; II. characterization of 45$Ca^{2+}$ uptake into plasma membrane vesicles. Plant Physiol. 85, 1137-1142 https://doi.org/10.1104/pp.85.4.1137
  20. Pfeiffer, A. and Hager, A. (1993) A $Ca^{2+}$-ATPase and a $Mg^{2+}$/ $H^{+}$-antiporter are present on tonoplast membranes from roots of Zea mays L. Planta 191, 377-385
  21. Giannini, J. L., Gildensoph, L. H., Reynold-Niesman, I. and Briskin, D. P. (1987) Calcium transport in sealed vesicles from red beet (Beta vulgaris L.) storage tissue; I. characterization of $Ca^{2+}$-pumping ATPase associated with the endoplasmic reticulum. Plant Physiol. 85, 1129-1136 https://doi.org/10.1104/pp.85.4.1129