Cloning and Sequencing of a Novel Glutaryl Acylase ${\beta}-Subunit$ Gene of Pseudomonas cepacia BY21 from Bioinformatics

  • Jeong, Yoo-Seok (Department of Biotechnology, Yeungnam University) ;
  • Yoo, Hyo-Jin (Department of Applied Microbiology, Yeungnam University) ;
  • Kim, Sang-Dal (Department of Applied Microbiology, Yeungnam University) ;
  • Nam, Doo-Hyun (Department of Pharmacy, Yeungnam University) ;
  • Khang, Yong-Ho (Department of Applied Microbiology, Yeungnam University)
  • 발행 : 2005.12.31

초록

Pseudomonas cepacia BY21 was found to produce glutaryl acylase that is capable of deacylating glutaryl-7-aminocephalosporanic acid (glutaryl-7-ACA) to 7-aminocephalosporanic acid (7-ACA), which is a starting material for semi-synthetic cephalosporin antibiotics. Amino acids of the reported glutaryl acylases from various Pseudomonas sp. strains show a high similarity (>93% identity). Thus, with the known nucleotide sequences of Pseudomonas glutaryl acylases in GenBank, PCR primers were designed to clone a glutaryl acylase gene from P. cepacia BY21. The unknown -subunit gene of glutaryl acylase from chromosomal DNA of P. cepacia BY21 was cloned successfully by PCR. The -subunit amino acids of P. cepacia BY21 acylase (GenBank accession number AY948547) were similar to those of Pseudomonas diminuta KAC-1 acylase except that Asn408 of P. diuminuta KAC-1 acylase was changed to Leu408.

키워드

참고문헌

  1. Khang, Y.-H., I.-W. Kim, Y.-R. Hah, J.-H. Hwangbo, and K.-K. Kang (2003) Fusion protein of Vitreoscilla hemoglobin with D-amino acid oxidase enhances activity and stability of biocatalyst in the bioconversion process of cephalosporin C. Biotechnol. Bioeng. 82: 480-488 https://doi.org/10.1002/bit.10592
  2. Franzosi, G., E. Battistel, I. Gagliardi, W. van der Goes (1995) Screening and characterization of microorganisms with glutaryl-7ADCA acylase activity. Appl. Microbiol. Biotechnol. 43: 508-513 https://doi.org/10.1007/BF00218457
  3. Khang, Y.-H. and B.-H. Yoo (2000) Isolation and characterization of a novel soil strain, Pseudomonas cepacia BY21, with glutaryl-7-aminocephalosporanic acid acylase activity. Biotechnol. Lett. 22: 317-320 https://doi.org/10.1023/A:1005643020744
  4. Aramori, I., M. Fukagawa, M. Tsumura, M. Iwami, H. Ono, H. Kojo, M. Kohsaka, Y. Ueda, and H. Imanaka (1991) Cloning and nucleotide sequencing of a novel 7$\beta$ - (4-carboxybutanamido)cephalosporanic acid acylase gene of Bacillus laterosporus and its expression in Escherichia coli and Bacillus subtilis. J. Bacteriol. 173: 7848-7855 https://doi.org/10.1128/jb.173.24.7848-7855.1991
  5. Lee, Y. H., T. S. Chang, H. J. Liu, and W. S. Chu (1998) An acidic glutaryl-7-aminocephalosporanic acid acylase from Pseudomonas nitroreducens. Biotechnol. Appl. Biochem. 28: 113-118
  6. Lee, Y. S., H. W. Kim, K. B. Lee, and S. S. Park (2000) Involvement of arginine and tryptophan residues in catalytic activity of glutaryl 7-aminocephalosporanic acid acylase from Pseudomonas sp. strain GK16. Biochim. Biophys. Acta 1523: 123-127 https://doi.org/10.1016/S0304-4165(00)00108-2
  7. Li, Y., J. Chen, W. Jiang, X. Mao, G. Zhao, and E. Wang (1999) In vivo post-translational processing and subunit reconstitution of cephalosporin acylase from Pseudomonas sp. 130. Eur. J. Biochem. 262: 713-719 https://doi.org/10.1046/j.1432-1327.1999.00417.x
  8. and application of fusion proteins of D-amino acid oxidase and glutaryl-7-aminocephalosporanic acid acylase for direct bioconversion of cephalosporin C to 7-aminocephalosporanic acid. Biotechnol. Lett. 26: 939-945 https://doi.org/10.1023/B:bile.0000025907.33332.be
  9. Fritz-Wolf, K., K. P. Koller, G. Lange, A. Liesum, K. Sauber, H. Schreuder, W. Aretz, and W. Kabsch (2002) Structure-based prediction of modifications in glutarylamidase to allow single-step enzymatic production of 7- aminocephalosporanic acid from cephalosporin C. Protein Sci. 11: 92-103 https://doi.org/10.1110/ps.ps.27502
  10. Mao, X., W. Wang, W. Jiang, and G. P. Zhao (2004) His23beta and Glu455beta of the Pseudomonas sp. 130 glutaryl-7-aminocephalosporanic acid acylase are crucially important for efficient autoproteolysis and enzymatic catalysis. Protein J. 23: 197-204 https://doi.org/10.1023/B:JOPC.0000026415.96041.27
  11. Otten, L. G., C. F. Sio, J. Vrielink, R. H. Cool, and W. J. Quax (2002) Altering the substrate specificity of cephalosporin acylase by directed evolution of the Beta-subunit. J. Biol. Chem. 277: 42121-42127 https://doi.org/10.1074/jbc.M208317200
  12. Otten, L. G., C. F. Sio, A. M. van der Sloot, R. H. Cool, and W. J. Quax (2004) Mutational analysis of a key residue in the substrate specificity of a cephalosporin acylase. Chembiochem 5: 820-825 https://doi.org/10.1002/cbic.200300764
  13. Sio, C. F., A. M. Riemens, J. van der Laan, R. M. D. Verhaert, and W. J. Quax (2002) Directed evolution of a glutaryl acylase into an adipyl acylase. Eur. J. Biochem. 269: 4495-4504 https://doi.org/10.1046/j.1432-1033.2002.03143.x
  14. Lee, Y. S. and S. S. Park (1998) Two-step autocatalytic processing of the glutaryl 7-aminocephalosporanic acid acylase from Pseudomonas sp. strain GK16. J. Bacteriol. 180: 4576-4582
  15. Kim, J. K., I. S. Yang, S. Rhee, Z. Dauter, Y. S. Lee, S. S. Park, and K. H. Kim (2003) Crystal structures of glutaryl 7-aminocephalosporanic acid acylase: insight into autoproteolytic activation. Biochemistry 42: 4084-4093 https://doi.org/10.1021/bi027181x
  16. Kim, Y., K.-H. Yoon, Y.-H. Khang, S. Turley, and W. G. Hol (2000) The 2.0 $\AA$ crystal strucutre of cephalosporin acylase. Structure 8: 1059-1068 https://doi.org/10.1016/S0969-2126(00)00505-0
  17. Shewale, J. G., K. K. Kumar, and G. R. Ambekar (1987) Evaluation of determination of 6-aminopenicillanic acid by p-dimethylaminobenzaldehyde. Biotechnol. Tech. 1: 69-72 https://doi.org/10.1007/BF00156291
  18. Oh, B., M. Kim, J. Yoon, K. Chung, Y. Shin, D. Lee, and Y. Kim (2003) Deacylation activity of cephalosporin acylase to cephalosporin C is improved by changing the sidechain conformations of active-site residues. Biochem. Biophys. Res. Commun. 310: 19-27 https://doi.org/10.1016/j.bbrc.2003.08.110
  19. Kim, J. H., J. S. Lim, and S. W. kim (2004) The improvement of cephalosporin C production by fed-batch cluture of Cephalosporium acremonium 25 using rice oil. Biotechnol. Bioprocess Eng. 9: 459-464 https://doi.org/10.1007/BF02933486
  20. Gal, S. W., S. W. Lee, and Y. J. Choi (2002) Molecular cloning and characterization of 58 kDa chitinase gene from Serratia marcescens KCTC 2172. Biotechnol. Bioprocess Eng. 7: 38-42 https://doi.org/10.1007/BF02935878
  21. Kim, O.-T., M.-Y. Kim, S.-J. Hwang, J.-C. Ahn, and B. Hwang (2005) Cloning and molecular analysis of cDNA encoding cycloartenol synthase from Centella asiatica (L.) urban. Biotechnol. Bioprocess Eng. 10: 16-22 https://doi.org/10.1007/BF02931177