DNA Microarrav Analysis on Saccharomyces cerevisiae under High Carbon Dioxide Concentration in Fermentation Process

  • Nagahisa, Keisuke (Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University) ;
  • Nakajima, Toshiharu (Department of Biotechnology, Graduate School of Engineering, Osaka University) ;
  • Yoshikawa, Katsunori (Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University) ;
  • Hirasawa, Takashi (Department of Biotechnology, Graduate School of Engineering, Osaka University) ;
  • Katakura, Yoshio (Department of Biotechnology, Graduate School of Engineering, Osaka University) ;
  • Furusawa, Chikara (Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University) ;
  • Shioya, Suteaki (Department of Biotechnology, Graduate School of Engineering, Osaka University) ;
  • Shimizu, Hiroshi (Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University)
  • Published : 2005.10.31

Abstract

The effect of carbon dioxide on yeast growth was investigated during the cultivation of pH 5.0 and pH 6.8. by replacing the nitrogen part with carbon dioxide under aerobic conditions. The values of the specific growth rate under pH 5.0 and pH 6.8 conditions became 64.0% and 46.9%, respectively, compared to those before the change in gas composition. This suggests that the effect of carton dioxide was greater pronounced in pH 6.8 than in pH 5.0. The genome-wide transcriptional response to elevated carbon dioxide was examined using a DNA microarray. As for upregulated genes, it was noteworthy that 3 genes were induced upon entry into a stationary phase and 6 genes were involved in stress response. Of 53 downregulated genes, 22 genes were involved in the ribosomal biogenesis and assembly and 5 genes were involved in the lipid metabolism. These facts suggest that carbon dioxide could bring the cell conditions partially to a stationary phase. The ALD6 gene encoding for cytosolic acetaldehyde dehydrogenase was downregulated, which would lead to a lack of cell components for the growth. The downregulation of ALD6 was greater in pH 6.8 than in pH 5.0. consistent with physiological response. This suggests that it might be the most effective factor for growth inhibition.

Keywords

References

  1. Jones, R. P. and P. F. Greenfield (1982) Effect of carbon dioxide on yeast growth and fermentation. Enzyme Microb. Technol. 4: 210-223. https://doi.org/10.1016/0141-0229(82)90034-5
  2. Chen, S. L. and F. Gutmanis (1976) Carbon dioxide inhibition of yeast growth in biomass production. Biotechnol. Bioeng. 18: 1455-1462. https://doi.org/10.1002/bit.260181012
  3. Norton, J. S. and R. W. Krauss (1972) The inhibition of cell division in Saccharomyces cerevisiae (Meyen) by carbon dioxide. Plant Cell Physiol. 13: 139-149. https://doi.org/10.1093/oxfordjournals.pcp.a074711
  4. Shen, H. Y., S. De Schrijver, N. Moonjai, K. J. Verstrepen, F. Delvaux, and F. R. Delvaux (2004) Effects of $CO_{2}$ on the formation of flavour volatiles during fermentation with immobilised brewer's yeast. Appl. Microbiol. Biotechnol. 64: 636-643. https://doi.org/10.1007/s00253-003-1523-0
  5. Hohmann, S. (2002) Osmotic stress signaling and osmoadaptation in yeast. Mol. Biol. Rev. 66: 300-372. https://doi.org/10.1128/MMBR.66.2.300-372.2002
  6. Piper, P. W. (1995) The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Microbiol. Lett. 134: 121-127. https://doi.org/10.1111/j.1574-6968.1995.tb07925.x
  7. Ikner, A. and K. Shiozaki (2005) Yeast signaling pathways in the oxidative stress response. Mutation Res. 569: 13-27. https://doi.org/10.1016/j.mrfmmm.2004.09.006
  8. Estruch, F. (2000) Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol. Rev. 24: 469-486. https://doi.org/10.1111/j.1574-6976.2000.tb00551.x
  9. Goffeau, A., B. G. Barrell, H. Bussey et. al. (1996) Life with 6000 genes. Science 274: 563-567.
  10. Spellman, P. T., G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Botstein, and B. Futcher (1998) Comprehensive identification of cell cycleregulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9: 3273-3297
  11. Kohrer, K. and H. Domdey (1991) Preparation of high molecular weight RNA. Methods Enzymol. 194: 398-415. https://doi.org/10.1016/0076-6879(91)94030-G
  12. Yang, I. V., E. Chen, J. P. Hasseman, W. Liang, B. C. Frank, S. Wang, V. Sharov, A. I. Saeed, J. White, J. Li, N. H. Lee, T. J. Yeatman, and J. Quackenbush (2002) Within the fold: assessing differential expression measures and reproducibility in microarray assays. Genome Biol. 3: research0062.1-0062.12.
  13. Cherry, J. M., C. Adler, C. Ball, S. A. Chervitz, S. S. Dwight, E. T. Hester, Y. Jia, G. Juvik, T. Roe, M. Schroeder, S. Weng, and D. Botstein (1998) SGD: Saccharomyces genome database. Nucleic Acids Res. 26: 73-79. https://doi.org/10.1093/nar/26.1.73
  14. Kuriyama, H., W. Mahakarnchanakul, and S. Matsui (1993) The effect of p$CO_2$ on yeast growth and metabolism under continuous fermentation. Biotechnol. Lett. 15: 189-194. https://doi.org/10.1007/BF00133022
  15. Hirasawa, T., Y. Nakakura, K. Yoshikawa, K. Ashitani, K. Nagahisa, C. Furusawa, Y. Katakura, H. Shimizu, and S. Shioya (2005) Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray. Appl. Microbiol. Biotechnol. In press
  16. Peng, Z. Y., R. J. Trumbly, and E. M. Reimann (1990) Purification and characterization of glycogen synthase from a glycogen-deficient strain of Saccharomyces cerevisiae. J. Biol. Chem. 265: 13871-13877.
  17. Hwang, P. K., S. Tugendreich, and R. J. Fletterick (1989) Molecular Analysis of GPHI, the Gene Encoding Glycogen Phosphorylase in Saccharomyces cerevisiae. Mol. Cell. Biol. 9: 1659-1666. https://doi.org/10.1128/MCB.9.4.1659
  18. Clifton, D., R. B. Walsh, and D. G. Fraenkel (1993) Functional studies of yeast glucokinase. J. Bacteriol. 175: 3289-3294. https://doi.org/10.1128/jb.175.11.3289-3294.1993
  19. Marchase, R. B., P. Bounelis, L. M. Brumley, N. Dey, B. Browne, D. Auger, T. A. Fritz, P. Kulesza, and D. M. Bedwell (1993) Phosphoglucomutase in Saccharomyces cerevisiae is a cytoplasmic glycoprotein and the acceptor for a Glc-phosphotransferase. J. Biol. Chem. 268: 8341-8349.
  20. Riou, C., J. M. Nicaud, P. Barre, and C. Gaillardin (1997) Stationary-phase gene expression in Saccharomyces cerevisiae during wine fermentation. Yeast 13: 903-915. https://doi.org/10.1002/(SICI)1097-0061(199708)13:10<903::AID-YEA145>3.0.CO;2-1
  21. Donalies, U. E. and U. Stahl (2001) Phase-specific gene expression in Saccharomyces cerevisiae, using maltose as carbon source under oxygen-limiting conditions. Curr. Genet. 39: 150-155. https://doi.org/10.1007/s002940100195
  22. Unnikrishnan, I., S. Miller, M. Meinke, and D. C. LaPorte (2003) Multiple positive and negative elements involved in the regulation of expression of GSY1 in Saccharomyces cerevisiae. J. Biol. Chem. 278: 26450-26457. https://doi.org/10.1074/jbc.M211808200
  23. Werner-Washburne, M., E. Braun, G. C. Johnston, and R. A. Singer (1993) Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol. Rev. 57: 383-401.
  24. Destruelle, M., H. Holzer, and D. J. Klionsky (1994) Identification and characterization of a novel yeast gene: the YGP1 gene product is a highly glycosylated secreted protein that is synthesized in response to nutrient limitation. Mol. Cell Biol. 14: 2740-2754. https://doi.org/10.1128/MCB.14.4.2740
  25. Coleman, S. T., T. K. Fang, S. A. Rovinsky, F. J. Turano, and W. S. Moye-Rowley (2001) Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae. J. Biol. Chem. 276: 244-250. https://doi.org/10.1074/jbc.M007103200
  26. Inoue, Y., T. Matsuda, K. Sugiyama, S. Izawa, and A. Kimura (1999) Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J. Biol. Chem. 274: 27002-27009. https://doi.org/10.1074/jbc.274.38.27002
  27. Hirayama, T., T. Maeda, H. Saito, and K. Shinozaki (1995) Cloning and characterization of seven cDNAs for hyperosmolarity-responsive (HOR) genes of Saccharomyces cerevisiae. Mol. Gen. Genet. 249: 127-138. https://doi.org/10.1007/BF00290358
  28. Tuite, M. F., N. J. Bentley, P. Bossier, and I. T. Fitch (1990) The structure and function of small heat shock proteins: analysis of the Saccharomyces cerevisiae Hsp26 protein. Antonie van Leeuwenhoek 58: 147-154. https://doi.org/10.1007/BF00548925
  29. Zu, T., J. Verna, and R. Ballester (2001) Mutations in WSC genes for putative stress receptors result in sensitivity to multiple stress conditions and impairment of Rlm1- dependent gene expression in Saccharomyces cerevisiae. Mol. Genet. Genom. 266: 142-155. https://doi.org/10.1007/s004380100537
  30. Lyons, T. J., N. Y. Villa, L. M. Regalla, B. R. Kupchak, A. Vagstad, and D. J. Eide (2004) Metalloregulation of yeast membrane steroid receptor homologs. Proc. Natl. Acad. Sci. USA 101: 5506-5511
  31. Karpichev, I. V., L. Cornivelli, G. M. Small (2002) Multiple regulatory roles of a novel Saccharomyces cerevisiae protein, encoded by YOL002c, in lipid and phosphate metabolism. J. Biol. Chem. 277: 19609-19617. https://doi.org/10.1074/jbc.M202045200
  32. Johnson, D. R., L. J. Knoll, D. E. Levin, and J. I. Gordon (1994) Saccharomyces cerevisiae contains four fatty acid activation (FAA) genes: an assessment of their role in regulating protein N-mydstoylation and cellular lipid metabolism. J. Cell Biol. 127: 751-762. https://doi.org/10.1083/jcb.127.3.751
  33. Stukey, J. E., V. M. McDonough, and C. E. Martin (1989) Isolation and characterization of OLE1, a gene affecting fatty acid desaturation from Saccharomyces cerevisiae. J. Biol. Chem. 264: 16537-16544.
  34. Mohamed, A. H., S. S. Chirala, N. H. Mody, W. Y. Huang, and S. J. Wakil (1988) Primary structure of the multifunctional alpha subunit protein of yeast fatty acid synthase derived from FAS2 gene sequence. J. Biol. Chem. 263: 12315-12325.
  35. Meaden, P. G., F. M. Dickinson, A. Mifsud, W. Tessier, J. Westwater, H. Bussey, and M. Midgley (1997) The ALD6 gene of Saccharomyces cerevisiae encodes a cytosolic, $Mg^{2+}$-activated acetaldehyde dehydrogenase. Yeast 13: 1319-1327. https://doi.org/10.1002/(SICI)1097-0061(199711)13:14<1319::AID-YEA183>3.0.CO;2-T
  36. Kim, K. S., M. S. Rosenkrantz, and L. Guarente (1986) Saccharomyces cerevisiae contains two functional citrate synthase genes. Mol. Cell. Biol. 6: 1936-1942. https://doi.org/10.1128/MCB.6.6.1936