Geophysics and Geophysical Exploration (지구물리와물리탐사)
- Volume 8 Issue 2
- /
- Pages.129-136
- /
- 2005
- /
- 1229-1064(pISSN)
- /
- 2384-051X(eISSN)
Inversion of Resistivity Tomography Data Using EACB Approach
EACB법에 의한 전기비저항 토모그래피 자료의 역산
Abstract
The damped least-squares inversion has become a most popular method in finding the solution in geophysical problems. Generally, the least-squares inversion is to minimize the object function which consists of data misfits and model constraints. Although both the data misfit and the model constraint take an important part in the least-squares inversion, most of the studies are concentrated on what kind of model constraint is imposed and how to select an optimum regularization parameter. Despite that each datum is recommended to be weighted according to its uncertainty or error in the data acquisition, the uncertainty is usually not available. Thus, the data weighting matrix is inevitably regarded as the identity matrix in the inversion. We present a new inversion scheme, in which the data weighting matrix is automatically obtained from the analysis of the data resolution matrix and its spread function. This approach, named 'extended active constraint balancing (EACB)', assigns a great weighting on the datum having a high resolution and vice versa. We demonstrate that by applying EACB to a two-dimensional resistivity tomography problem, the EACB approach helps to enhance both the resolution and the stability of the inversion process.
감쇠최소자승법은 각종 물리탐사 자료에 가장 널리 사용되는 역산법이다. 일반적으로 최소자승법에서 최소화되는 목적함수는 자료오차(data misfit)와 모델제한자의 합으로 주어진다. 따라서 역산에서 자료오차와 모델제한자는 함께 중요한 역할을 담당한다. 하지만 역산에 관한 대부분의 연구는 주로 모델제한자의 설정방법과 적절한 라그랑지 곱수의 선정방법에 치중되어 왔다. 일반적으로 자료획득시 자료가 갖는 표준편차를 자료가중값의 계산에 사용하는 것이 추천되고 있지만, 실제 현장조사에서는 자료의 표준편차는 좀처럼 측정되지 않으며, 대부분의 역산에서 자료가중행렬은 어쩔 수 없이 단위행렬로 간주된다. 본 논문에서는 자료분해능행렬과 그 분산함수를 분석하여 자동적으로 계산된 자료가중행렬을 사용하는 역산법을 개발하였다. EACB법이라 명명한 이 역산법에서는 분해능이 높은 자료에는 높은 가중값을, 작은 자료에는 작은 가중값을 부여한다. 개발된 EACB 역산법을 전기비저항 토모그피법에 적용한 결과, 보다 안정적이고 분해능이 향상된 결과를 얻을 수 있었다.
Keywords