Analysis of Set-up Errors during CT-scan, Simulation, and Treatment Process in Breast Cancer Patients

유방암 환자의 모의치료, CT 스캔 및 치료 과정에서 발생되는 준비 오차 분석

  • Lee, Re-Na (Department on Radiation Oncology, College of Medicine, Ewha Womans University Mokdong Hospital)
  • 이레나 (이화여자대학교 의과대학 방사선종양학교실)
  • Published : 2005.09.01

Abstract

Purpose: Although computed tomography (CT) simulators are commonly used in radiation therapy department, many Institution still use conventional CT for treatments. In this study the setup errors that occur during simulation, CT scan (diagnostic CT scanner), and treatment were evaluated for the twenty one breast cancer patients. Materials and Methods: Errors were determined by calculating the differences in isocenter location, SSD, CLD, and locations of surgical clips implanted during surgery. The anatomic structures on simulation film and DRR image were compared to determine the movement of isocenter between simulation and CT scan. The isocetner point determined from the radio-opaque wires placed on patient's surface during CT scan was moved to new position if there was anatomic mismatch between the two images Results: In 7/21 patients, anatomic structures on DRR Image were different from the simulation Image thus new isocenter points were placed for treatment planning. The standard deviations of the diagnostic CT setup errors relative to the simulator setup in lateral, longitudinal, and anterior-posterior directions were 2.3, 1.6, and 1.6 mm, respectively. The average variation and standard deviation of SSD from AP field were 1.9 mm and 2.3 mm and from tangential fields were 2.8 mm and 3.7 mm. The variation of the CLD for the 21 patients ranged from 0 to 6 mm between simulation and DRR and 0 to 5 mm between simulation and treatment. The group systematic errors analyzed based on clip locations were 1.7 mm in lateral direction, 2.1 mm in AP direction, and 1.7 mm in SI direction. Conclusion: These results represent that there was no significant differences when SSD, CLD, clips' locations and isocenter locations were considered. Therefore, it is concluded that when a diagnostic CT scanner is used to acquire an image, the set-up variation is acceptable compared to using CT simulator for the treatment of breast cancer. However, the patient has to be positioned with care during CT scan in order to reduce the setup error between simulation and CT scan.

목적: 방사선 치료 시 3차원 영상 획득에 방사선치료 전용으로 개발된 모의 CT를 사용하고 있으나 아직까지도 많은 병원에서는 일반 진단용 CT를 이용하고 있다. 따라서 본 연구에서는 21명의 유방암 환자를 대상으로 모의치료, 진단용 CT기를 이용한 CT 스캔, 및 치료 과정 사이의 준비 오차를 분석하였다. 대상 및 방법: 준비 오차는 isocenter, SSD, CLD, 및 수술 시 삽입된 클립의 위치들의 변화를 계산하여 분석하였다. 모의조사에서 얻어진 x-ray 영상에 나타난 해부학적 구조물과 CT 스캔 시 isocenter를 표시하기 위해 환자의 몸에 부착된 marker를 기준으로 정해진 isocenter에서 얻은 DRR 영상상의 구조물을 비교하여 잘 일치하지 않을 경우 새로운 isocenter가 정해졌고 이러한 isocenter의 위치 변화를 계산하였다. 결과: 21명의 환자 중 7명의 경우 DRR상과 모의치료 필름상의 해부학적 구조물이 21명의 환자 중 7명이 일치하지 않았으므로 치료계획을 실행하기에 앞서 새로운 isocenter를 정하였다. Isocenter 이동을 근거로 계산된 진단용 CT와 모의 치료간에 발생되는 평균 준비오차의 표준편차는 횡측 방향으로 2.3 mm, longitudinal 방향으로 1.6 mm, 그리고 AP 방향으로 1.6 mm이다. 모의치료와 CT data의 AP 방향 및 tangential 방향에서 측정된 SSD 값의 평균오차 및 표준편차는 각각 $1.9{\pm}2.3\;mm$$2.8{\pm}3.7\;mm$이다. 모의치료와 DRR간의 CLD 오차의 변화범위는 0에서 6 mm 이고 모의치료와 portal 영상간의 오차범위는 0에서 5 mm이다. 클립을 기준으로 계산된 그룹의 systematic error는 횡측 방향으로 1.7 mm, AP 방향으로 2.1 mm, 그리고 SI 방향으로 1.7 mm이다. 결론: 연구 결과 SSD, CLD, 클립의 움직임 및 isocenter의 위치변화 측면에서 분석될 경우 그다지 큰 오차는 발생하지 않았음을 보여준다. 그러므로 본 연구결과 유방암 환자의 경우 진단용 CT를 사용한다 하더라도 준비오차는 모의 CT를 사용하는 경우와 비교하여 차이가 없음을 알 수 있다. 그러나 모의치료와 CT스캔 사이의 준비오차를 감소하기 위해서는 CT 영상 획득 시 환자 위치고정에 특별한 주의를 기울여야 한다.

Keywords

References

  1. ICRU Report 62: Prescribing, recording, and reporting Photon Beam Therapy. Inthernational Commission in Radiation Units and Mesurement, Bethesda, MD 1995
  2. Kitamura K, Shirato H, Seppenwoolde Y, et al. Threedimensional intrafractional movement of prostate measured during real-time tumor-tracking radiotherapy in supine and prone treatment position. Int J Radiat Oncol Biol Phys 2002; 53:1117-1123 https://doi.org/10.1016/S0360-3016(02)02882-1
  3. Horst E, Micke O, Moustakis C, Schuck A, Schafer U, Willich NA. Conformal therapy for pancreatic cancer: variation of organ position due to gastrointerstinal distention-implications for treatment planning. Radiology 2002;222:681-686 https://doi.org/10.1148/radiol.2223010639
  4. Giraud P, De Rycke Y, Dubray B, et al. Conformal radiotherapy (CRT) planning for lung cancer: analysis of intrathoracic organ motion during extreme phases of breathing. Int J Radiat Oncol Biol Phys 2001;51:1081-1092 https://doi.org/10.1016/S0360-3016(01)01766-7
  5. Yan D, Wong J, Vicini F, et al. Adaptive modification of treatment planning to minimize the deleterious effects of treatment setup errors. Int J Radiat Oncol Biol Phys 1997;38: 197-206 https://doi.org/10.1016/S0360-3016(97)00229-0
  6. Hanley J, Lumley MA, Mageras GS, et al. Measurement of patient positioning errors in three-dimensional conformal radiotherapy of the prostate. Int J Radiat Oncol Biol Phys 1997;37:435-444 https://doi.org/10.1016/S0360-3016(96)00526-3
  7. Haslam JJ, Lujan AE, Mundt AJ, et al. Setup errors in patients treated with intensity-modulated whole pelvic radiation therapy for gynecological malignancies. Med Dosim 2005;30: 36-42 https://doi.org/10.1016/j.meddos.2004.10.007
  8. Astreinidou E, Bel A, Raajjmakers CP, et al. Adequate margins for random setup uncertainties in head-and-neck IMRT. Int J Radiat Oncol Biol Phys 2005;61:938-944 https://doi.org/10.1016/j.ijrobp.2004.11.016
  9. Alasti H, Petric MP, Catton CN, et al. Portal imaging for evaluation of daily on-line setup errors and off-line organ motion during conformal irradiation of carcinoma of the prostate. Int J Radiat Oncol Biol Phys 2001;49:869-884 https://doi.org/10.1016/S0360-3016(00)01446-2
  10. de Boer HC, van Sornsen de Koste JR, Senan S, et al. Analysis and reduction of 3D systematic and random setup errors during the simulation and treatment of lung cancer patients with CT-based external beam radiotherapy dose planning. Int J Radiat Oncol Biol Phys 2001;49:857-868 https://doi.org/10.1016/S0360-3016(00)01413-9
  11. Bijhold J, Lebesque JV, Hart AM, et al. Maximizing seup accuracy using portal images as applied to a conformal boost technique for prostate cancer. Radiother Oncol 1992; 24:261-271 https://doi.org/10.1016/0167-8140(92)90233-K
  12. Stroom JC, de Boer JC, Huizenga H, et al. Inclusion of geometrical uncertainties in radiotherapy treatment planning by means of coverage probability. Int J Radiat Oncol Biol Phys 1999;43:905-919 https://doi.org/10.1016/S0360-3016(98)00468-4
  13. Fein DA, McGee KP, Schultheiss TE, Fowble BL, Hanks GE. Intra- and interfractional reproducibility of tangential breast fields: a prospective on-line portal imaging study. Int J Radiat Oncol Biol Phys 1996;34:733-740 https://doi.org/10.1016/0360-3016(95)02037-3
  14. Smith RP, Bloch P, Harris EE, et al. Analysis of interfraction and intrafraction variation during tangential breast irradiation with an electronic portal imaging device. Int J Radiat Oncol Biol Phys 2005;62:373-378 https://doi.org/10.1016/j.ijrobp.2004.10.022
  15. van Tienhoven G, Lanson JH, Cabeels D, et al. Accuracy in tangential breast set-up: a portal imaging study. Radiother Oncol 2005;22:317-322 https://doi.org/10.1016/0167-8140(91)90171-C
  16. Valdagani R, Italia C. Early cancer irradiation after conservative surgery: quality control by portal localization films. Radiather Oncol 1991;22:341-343
  17. Balter JM, Ten Haken RK, Lawrence TS, et al. Uncertainties in CT-based radiation therapy reatment planning associated with patient breating. Int J Radiat Oncol Biol Phys 1996;36:164-174 https://doi.org/10.1016/S0360-3016(96)00275-1
  18. Kukolowicz PF, Debrowski A, Gut P, et al. Evaluation of set-up deviations during the irradiation of patients suffering from breast cancer treated with two different techniques. Radiother Oncol 2005;75:22-27 https://doi.org/10.1016/j.radonc.2005.02.004