비인강암 환자의 예후에서 $2-[18^F]$ Fluoro-2-Deoxy-D-Glucose PET 영상에서 계산되는 Standardized Uptake Value의 의의

Prediction of Prognosis to Concurrent Chemo-Radiotherapy by Standardized Uptake Value of $2-[18^F]$ Fluovo-2-Deoxy-D-Glucose for Nasopharyngeal Carcinomas

  • 이상욱 (울산대학교 의과대학 서울아산병원 방사선종양학과) ;
  • 임기천 (울산대학교 의과대학 서울아산병원 핵의학과) ;
  • 남순열 (울산대학교 의과대학 서울아산병원 핵의학과) ;
  • 김재승 (울산대학교 의과대학 서울아산병원 핵의학과) ;
  • 최은경 (울산대학교 의과대학 서울아산병원 방사선종양학과) ;
  • 안승도 (울산대학교 의과대학 서울아산병원 방사선종양학과) ;
  • 신성수 (울산대학교 의과대학 서울아산병원 방사선종양학과) ;
  • 류진숙 (울산대학교 의과대학 서울아산병원 핵의학과) ;
  • 김상윤 (울산대학교 의과대학 서울아산병원 이비인후과) ;
  • 이봉재 (울산대학교 의과대학 서울아산병원 이비인후과) ;
  • 최승호 (울산대학교 의과대학 서울아산병원 이비인후과) ;
  • 김성배 (울산대학교 의과대학 서울아산병원 종양학과) ;
  • 문대혁 (울산대학교 의과대학 서울아산병원 핵의학과)
  • Lee Sang-wook (Department of Radiation Oncology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Im Ki Chun (Department of Nuclear Medicine, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Nam Soon Yuhl (Department of Otorhinolaryngology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Kim Jae Seung (Department of Nuclear Medicine, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Choi Eun Kyung (Department of Radiation Oncology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Ahn Seung Do (Department of Radiation Oncology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Shin Seong Soo (Department of Radiation Oncology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Ryu Jin Sook (Department of Nuclear Medicine, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Kim Sang Yoon (Department of Otorhinolaryngology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Lee Bong-Jae (Department of Otorhinolaryngology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Choi Seung-Ho (Department of Otorhinolaryngology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Kim Sung-Bae (Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Moon Dae Hyuk (Department of Nuclear Medicine, University of Ulsan College of Medicine, Asan Medical Center)
  • 발행 : 2005.03.01

초록

목적 : 원격존기의 전이가 없는 비인강암에서 동시항암화학방사선치료를 시행 받은 환자에서 진단 당시 시행한 양전자단층촬영의 fluorodeoxyglucose (FDG) 섭취정도가 예후에 미치는 영향을 알아보고자 하였다. 대상 및 방법 : 본원에서 원격장기의 전이가 없는 비인강암으로 진단 받고 진단 당시 ($[18^F]$FDG-PET을 시행한 환자는 총 41명이었다. PET 검사는 모두 항암방사선치료 전에 시행되었다. FOG 섭취 정도를 알아보기 위해서 종양 내에서 측정된 최대 standardized uptake value (SUV)를 측정하였다. 결과 : 항암화학방사선지료 후 모든 환자는 완전반응을 보였다. 전체 41명 중에서 10명이 재발하였는데 재발하지 않은 환자의 $SUV_{max}$ 중앙값은 6.48 (range: $2.31\~26.07$)이었고 재발한 환자의 중앙 $SUV_{max}$$8.55(2.49\~14.81)$이었다. 양 군 간의 5UV의 차이는 p값이 0.0505로 통계적 차이가 관찰되지 않았다. $SUV_{max}$를 중앙값을 기준으로 나누어 보았을 때 $SUV_{max}$가 높은 환자의 3년 생존율이 통계적으로 유의하게 저조하였다($51\%\;{\nu}91\%$, p=0.0070). 결론 : 원격전이가 없는 비인강암에서 항암화학방사선치료를 시행 받은 환자에서 진단 당시 시행한 FDG 섭취 정도는 예후를 예측하는데 유용할 것으로 생각되었다. 따라서 진단 당시 시행한 FDG-PET에서 SUV가 높은 경우(8 이상)에는 좀더 적극적인 치료가 필요할 것으로 생각하였다.

Purpose : To prospectively evaluate the use of positron emission tomography with the glucose analog fluoro-deoxyglucose (FDG-PET) to deoxyglucose (FDG-PET) to predict disease-free survival (DFS) after concurrent chemo-radiotherapy (CCRT) in patients with non-disseminated nasopharyngeal carcinoma (NPC). Materials and Methods : We studied 41 patients with non-disseminated NPC scheduled to undergo platinum-based CCRT were eligible for this study. Patients were studied by FDG-PET prior to the CCRT. FDG uptake of tumors were measured with the maximal standardized uptake value (SUV). Results : Complete response rate was $100\%$. In ten patients who presented with any component of treatment failure, the median $SUV_{max}$ was 8.55 (range: $2.49\~14.81$) in any component of failure and the median $SUV_{max}$ was 5.48 (range: $2.31\~26.07$) In the remaining patients without any such failure. Patients having tumors with high FDG uptake had a significantly lower 3-year DFS ($51\%\;{\nu}91\%$, p=0.0070) compared with patients having low uptake tumors. Conclusion : FDG uptake, as measured by the SUV, has potential value in predicting DFS in NPC treated by CCRT, High FDG uptake may be a useful parameter for Identifying patients requiring more aggressive treatment approaches.

키워드

참고문헌

  1. Wang CC, Little JB, Schulz MD. Cancer of the nasopharynx. Its clinical and radiotherapeutic considerations. Cancer 1962;15:921-926 https://doi.org/10.1002/1097-0142(196209/10)15:5<921::AID-CNCR2820150506>3.0.CO;2-3
  2. Hsu MM, Huang SC, Lynn TC, et al. The survival of patients with nasopharyngeal carcinoma. Otolaryngol Head Neck Surg 1982;90:289-295
  3. Johansen LV, Mestre M, Overgaard J. Carcinoma of the nasopharynx: analysis of treatment results in 167 consecutively admitted patients. Head Neck 1992;14:200-207 https://doi.org/10.1002/hed.2880140307
  4. Kwong D, Sham J, Choy D. The effect of loco-regional control on distant metastatic dissemination in carcinoma of the nasopharynx: an analysis of 1301 patients. Int J Radiat Oncol Biol Phys 1994;30:1029-1036 https://doi.org/10.1016/0360-3016(94)90306-9
  5. Lee AW, Poon YF, Foo W, et al. Retrospective analysis of 5037 patients with nasopharyngeal carcinoma treated during 1976-1985: overall survival and patterns of failure. Int J Radiat Oncol Biol Phys 1992;23:261-270 https://doi.org/10.1016/0360-3016(92)90740-9
  6. Mesic JB, Fletcher GH, Goepfert H. Megavoltage irradiation of epithelial tumors of the nasopharynx. Int J Radiat Oncol Biol Phys 1981;7:447-453 https://doi.org/10.1016/0360-3016(81)90129-2
  7. Perez CA, Devineni VR, Marcial-Vega V, et al. Carcinoma of the nasopharynx: factors affecting prognosis. Int J Radiat Oncol Biol Phys 1992;23:271-280 https://doi.org/10.1016/0360-3016(92)90741-Y
  8. Petrovich Z, Cox JD, Middleton R, et al. Advanced carcinoma of the nasopharynx. 2. Pattern of failure in 256 patients. Radiother Oncol 1985;4:15-20 https://doi.org/10.1016/S0167-8140(85)80057-8
  9. Teo P, Tsao SY, Shiu W, et al. A clinical study of 407 cases of nasopharyngeal carcinoma in Hong Kong. Int J Radiat Oncol Biol Phys 1989;17:515-530 https://doi.org/10.1016/0360-3016(89)90102-8
  10. Fleming ID, Cooper JS, Henson DE, et al. AJCC cancer staging manual 5th ed. Philadelphia; Lippincott-Raven, 1997
  11. Ho JHC. Stage classification of nasopharyngeal carcinoma: a review. In: De The G, Eto Y, editors. Nasopharyngeal carcinoma: etiology and control. IARC Scientific Pub. No. 20. Lyon: International Agency for Research on Cancer, 1978:99-113
  12. Min H, Hong M, Ma J, et al. A new staging system for nasopharyngeal carcinoma in China. Int J Radiat Oncol Biol Phys 1994;30:1037-1042 https://doi.org/10.1016/0360-3016(94)90307-7
  13. Lee S, Kim GE, Suh CO, Lee KK, Park W. A Comparison of T classification of the AJCC and Ho staging systems for nasopharyngeal carcinoma. Kor J Head Neck Oncol 2002;18:179-183
  14. Kao CH, ChangLai SP, Chieng PU, et al. Detection of recurrent or persistent nasopharyngeal carcinomas after radiotherapy with 18-fluoro-2-deoxyglucose positron emission tomography and comparison with computed tomography. J Clin Oncol 1998;16:3550-3555 https://doi.org/10.1200/JCO.1998.16.11.3550
  15. Kao CH, Hsieh JF, Tsai SC, et al. Comparison of 18-fluoro-2-deoxyglucose positron emission tomography and computed tomography in detection of cervical lymph node metastases of nasopharyngeal carcinoma. Ann Otol Rhinol Laryngol 2000;109:1130-1134 https://doi.org/10.1177/000348940010901209
  16. Tsai MH, Shiau YC, Kao CH, et al. Detection of recurrent nasopharyngeal carcinomas with positron emission tomography using 18-fluoro-2-deoxyglucose in patients with indeterminate magnetic resonance imaging findings after radiotherapy. J Cancer Res Clin Oncol 2002;128:279-282 https://doi.org/10.1007/s00432-002-0341-6
  17. Kao CH, Shiau YC, Shen YY, et al. Detection of recurrent or persistent nasopharyngeal carcinomas after radiotherapy with technetium-99m methoxyisobutylisonitrile single photon emission computed tomography and computed tomography: comparison with 18-fluoro-2-deoxyglucose positron emission tomography. Cancer 2002;94:1981-1986 https://doi.org/10.1002/cncr.10400
  18. Terhaard CH, Bongers V, van Rijk PP, et al. F-18-fluoro-deoxy-glucose positron-emission tomography scanning in detection of local recurrence after radiotherapy for laryngeal/pharyngeal cancer. Head Neck 2001;23:933-941 https://doi.org/10.1002/hed.1135
  19. Sakamoto H, Nakai Y, Ohashi Y, et al. Monitoring of response to radiotherapy with fluorine-18 deoxyglucose PET of head and neck squamous cell carcinomas. Acta Otolaryngol Suppl 1998;538:254-260 https://doi.org/10.1080/00016489850183034
  20. Brun E, Kjellen E, Tennvall J, et al. FDG PET studies during treatment: prediction of therapy outcome in head and neck squamous cell carcinoma. Head Neck 2002;24:127-135 https://doi.org/10.1002/hed.10037
  21. Lapela M, Grenman R, Kurki T, et al. Head and neck cancer: detection of recurrence with PET and 2-[F-18]fluoro-2-deoxy-D-glucose. Radiology 1995;197:205-211 https://doi.org/10.1148/radiology.197.1.7568825
  22. Chaiken L, Rege S, Hoh C, et al. Positron emission tomography with fluorodeoxyglucose to evaluate tumor response and control after radiation therapy. Int J Radiat Oncol Biol Phys 1993;27:455-464 https://doi.org/10.1016/0360-3016(93)90259-X
  23. Anzai Y, Carroll WR, Quint DJ, et al. Recurrence of head and neck cancer after surgery or irradiation: prospective comparison of 2-deoxy-2-[F-18]fluoro-D-glucose PET and MR imaging diagnoses. Radiology 1996;200:135-141 https://doi.org/10.1148/radiology.200.1.8657901
  24. Bailet JW, Sercarz JA, Abemayor E, et al. The use of positron emission tomography for early detection of recurrent head and neck squamous cell carcinoma in postradiotherapy patients. Laryngoscope 1995;105:135-139 https://doi.org/10.1288/00005537-199502000-00004
  25. Mankoff DA, Dunnwald LK, Gralow JR, et al. Blood flow and metabolism in locally advanced breast cancer: relBlood flow and metabolism in locally advanced breast cancer: relationship to response to therapyationship to response to therapy. J Nucl Med 2002;43:500-509
  26. Eary JF, O'Sullivan F, Powitan Y, et al. Sarcoma tumor FDG uptake measured by PET and patient outcome: a retrospective analysis. Eur J Nucl Med Mol Imaging 2002;29:1149-1154 https://doi.org/10.1007/s00259-002-0859-5
  27. Kitagawa Y, Sano K, Nishizawa S, et al. FDG-PET for prediction of tumour aggressiveness and response to intra-arterial chemotherapy and radiotherapy in head and neck cancer. Eur J Nucl Med Mol Imaging 2003;30:63-71 https://doi.org/10.1007/s00259-002-0978-z
  28. Spence AM, Muzi M, Krohn KA. Molecular imaging of regional brain tumor biology. J Cell Biochem 2002;39(Suppl):25-35 https://doi.org/10.1002/jcb.10406
  29. Oshida M, Uno K, Suzuki M, et al. Predicting the prognoses of breast carcinoma patients with positron emission tomography using 2-deoxy-2-fluoro[18F]-D-glucose. Cancer 1998;82:2227-2234 https://doi.org/10.1002/(SICI)1097-0142(19980601)82:11<2227::AID-CNCR18>3.0.CO;2-W
  30. Vansteenkiste JF, Stroobants SG, Dupont PJ, et al. Prognostic importance of the standardized uptake value on (18)F-fluoro-2-deoxy-glucose-positron emission tomography scan in non-small-cell lung cancer: An analysis of 125 cases. Leuven Lung Cancer Group. J Clin Oncol 1999;17:3201-3206 https://doi.org/10.1200/JCO.1999.17.10.3201
  31. Halfpenny W, Hain SF, Biassoni L, et al. FDG-PET. A possible prognostic factor in head and neck cancer. Br J Cancer 2002;86:512-516 https://doi.org/10.1038/sj.bjc.6600114
  32. Ahuja V, Coleman RE, Herndon J, et al. The prognostic significance of fluorodeoxyglucose positron emission tomography imaging for patients with nonsmall cell lung carcinoma. Cancer 1998;83:918-924 https://doi.org/10.1002/(SICI)1097-0142(19980901)83:5<918::AID-CNCR17>3.0.CO;2-Y
  33. Eary JF, Conrad EU, Bruckner JD, et al. Quantitative [F-18]fluorodeoxyglucose positron emission tomography in pretreatment and grading of sarcoma. Clin Cancer Res 1998;4:1215-1220
  34. Schulte M, Brecht-Krauss D, Heymer B, et al. Fluorodeoxyglucose positron emission tomography of soft tissue tumours: is a non-invasive determination of biological activity possible? Eur J Nucl Med 1999;26:599-605 https://doi.org/10.1007/s002590050427
  35. Schulte M, Brecht-Krauss D, Heymer B, et al. Grading of tumors and tumorlike lesions of bone: evaluation by FDG PET. J Nucl Med 2000;41:1695-1701
  36. Higashi K, Ueda Y, Yagishita M, et al. FDG PET measurement of the proliferative potential of non-small cell lung cancer. J Nucl Med 2000;41:85-92
  37. Vesselle H, Schmidt RA, Pugsley JM, et al. Lung cancer proliferation correlates with [F-18]fluorodeoxyglucose uptake by positron emission tomography. Clin Cancer Res 2000;6:3837-3844
  38. Yang Y, Kim JS, Kim SY, et al. Comparison of 18F FDG-PET and CT/MRI for the diagnosis of cervical lymph node metastasis in head and neck cancer: a level-by-level based study. Kor J Nucl Med 2004;38:52-61
  39. Lee S, Kim JS, Ryu JS, et al. Evaluation of the response of radiotherapy to squamous cell carcinoma of the head and neck using 18FDG-PET. Kor J Head Neck Oncol 2003;19:58-62
  40. Lee S, Kim JS, Im KC, et al. Change of FDG uptake according to radiation dose on squamous cell carcinoma of the head and neck. J Korean Soc Ther Radiol 2004;22:98-107
  41. Al-Sarraf M, LeBlanc M, Giri PG, et al. Chemoradiotherapy versus radiotherapy in patients with advanced nasopharyngeal cancer: phase III randomized Intergroup study 0099. J Clin Oncol 1998;16:1310-1317 https://doi.org/10.1200/JCO.1998.16.4.1310
  42. Hoekstra CJ, Paglianiti I, Hoekstra OS, et al. Monitoring response to therapy in cancer using [18F]-2-fluoro-2-deoxy-D-glucose and positron emission tomography: an overview of different analytical methods. Eur J Nucl Med 2000;27:731-743 https://doi.org/10.1007/s002590050570
  43. Huang SC. Anatomy of SUV. Standardized uptake value. Nucl Med Biol 2000;27:643-646 https://doi.org/10.1016/S0969-8051(00)00155-4
  44. Larson SM, Weiden PL, Grunbaum Z, et al. Positron imaging feasibility studies. II: characteristics of 2-deoxyglucose uptake in rodent and canine neoplasms: concise communi cation. J Nucl Med 1981;22:875-879
  45. Hawkins RA, Hoh C, Dahlbom M, et al. PET cancer evaluations with FDG. J Nucl Med 1991;32:1555-1558
  46. Wahl RL, Hutchins GD, Buchsbaum DJ, et al. 18F-2-deoxy-2-fluoro-D-glucose uptake into human tumor xenografts. Feasibility studies for cancer imaging with positronemission tomography. Cancer 1991;67:1544-1550 https://doi.org/10.1002/1097-0142(19910315)67:6<1544::AID-CNCR2820670614>3.0.CO;2-0
  47. Sigurdson ER CA. Commentary on 'The applications of PET in clinical oncology'. J Nucl Med 1991;32:649-650
  48. Lyon RC, Cohen JS, Faustino PJ, et al. Glucose metabolism in drug-sensitive and drug-resistant human breast cancer cells monitored by magnetic resonance spectroscopy. Cancer Res 1988;48:870-877
  49. Folpe AL, Lyles RH, Sprouse JT, et al. (F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone and soft tissue sarcoma. Clin Cancer Res 2000;6: 1279-1287
  50. Allal AS, Dulguerov P, Allaoua M, et al. Standardized uptake value of 2-[(18)F] fluoro-2-deoxy-D-glucose in predicting outcome in head and neck carcinomas treated by radiotherapy with or without chemotherapy. J Clin Oncol 2002;20:1398-1404 https://doi.org/10.1200/JCO.20.5.1398
  51. Minn H, Lapela M, Klemi PJ, et al. Prediction of survival with fluorine-18-fluoro-deoxyglucose and PET in head and neck cancer. J Nucl Med 1997;38:1907-1911