References
- Andrey, P. and P. Tarroux, 1998. Unsupervised segmentation of Markov random field modeled textured images using selectionist relaxation, IEEE Trans. Pattern Anal. Machine Intell., 20: 252-262 https://doi.org/10.1109/34.667883
- Bouman, C. and B. Liu, 1991. Multiple resolution segmentation of textured images, IEEE Trans. PattemAnal. Machine Intell., 13: 99-113 https://doi.org/10.1109/34.67641
- Hazel, G. G., 2000. Multivariate Gaussian MRF for multispectral scene segmentation and anomaly detection, IEEE Trans. Geosci. Remote Sensing, 38: 1199-121l https://doi.org/10.1109/36.843012
- Georgii, H. O., 1979. Canonical Gibbs Measure, Springer-Verlag, Berlin
- Kervrann, C. and F. Heitz, 1995. A Markov random field model-based approach to unsupervised texture segmentation using local and global spatial statistics, IEEE Trans. Image Processing, 4: 856-862 https://doi.org/10.1109/83.388090
- Kindermann, R. and J. L. Snell, 1982. Markov Random Fields and Their Application, Amer. Math. Soc., Providence, R. I
- Lee, S., 2004. Fuzzy training based on segmentation using spatial region growing, Korean J. Remote Sensing, 20: 353-359 https://doi.org/10.7780/kjrs.2004.20.5.353
- Lee S. and M. M. Crawford, 2005. Unsupervised multistage image classification using hierarchical clustering with a bayesian similarity measure, IEEE Trans. Image Processing, 14: 312- 320 https://doi.org/10.1109/TIP.2004.841195
- Liang, Z, R. J. Jaszczak, and R. E. Coleman, 1992. Parameter Estimation of Finite Mixture Using the EM Algorithm and Information Criteria with Application to Medical Image Processing, IEEE Trans. Nucl. Sci., 39: 1126-1133 https://doi.org/10.1109/23.159772
- Manjunath, B. S. and R. Chellappa, 1991. Unsupervised texture segmentation using Markov random fields, IEEE Trans. Pattern Anal. Machine Intell., 13: 478-482 https://doi.org/10.1109/34.134046
- Mignotte, M., C. Coller, P. Perez, and P. Bouthemy, 2000. Sonar image segmentation using an unsupervised hierarchical MRF model, IEEE Trans. Image Processing, 9: 1216-1231 https://doi.org/10.1109/83.847834
- Nguyen, H. H. and P. Cohen, 1993. Gibbs random fields, fuzzy clustering, and the unsupervised segmentation of textured images, CVGIP: Graphical Models Image Processing, 55: 1-9 https://doi.org/10.1006/gmip.1993.1001
- Panjwani, D. K. and G. Healey, 1995. Markov random field models for unsupervised segmentation of textured color images, IEEE Trans. Pattern Anal. Machine Intell., 17: 939-954 https://doi.org/10.1109/34.464559
- Sarkar, A., M. K. Biswas, and K. M. S. Sharma, 2000. A simple unsupervised MRF model based image segmentaion approach, IEEE Trans. Image Processing, 9: 801-812 https://doi.org/10.1109/83.841527
- Sarkar, A., M. K. Biswas, B. Kartikeyan, V. Kumar, K. L. Majumder, and D. K. Pal, 2002. A MRF model-based segmentation approach to classification for multispectral imagery, IEEE Trans.Geosci. Remote Sensing, 40:1102-1113 https://doi.org/10.1109/TGRS.2002.1010897
- Sziranyi, T., J. Zerubia, L. Czuni, D. Geldreich, and Z. Kato, 2000. Image segmentation using Markov random field model in fully parallel cellular network architectures, Real- Time Imaging, 6: 195-211 https://doi.org/10.1006/rtim.1998.0159
- Won, C. S. and H. Derin, 1992. Unsupervised segmentation of noisy and textured images using Markov random fields, Comp. Vision, Graphics, Image Processing, 54: 308-328
- Yamazaki, T. and D. Gingras, 1999. Unsupervised multispectral image classification using MRF models and VQ method, IEEE Trans.Geosci. Remote Sensing, 37: 1173-1176 https://doi.org/10.1109/36.752237