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MRF-based Fuzzy Classification Using EM Algorithm
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Abstract : A fuzzy approach using an EM algorithm for image classification is presented. In this study, a
double compound stochastic image process is assumed to combine a discrete-valued field for region-class
processes and a continuous random field for observed intensity processes. The Markov random field is
employed to characterize the geophysical connectedness of a digital image structure. The fuzzy classification

is an EM iterative approach based on mixture probability distribution. Under the assumption of the double

compound process, given an initial class map, this approach iteratively computes the fuzzy membership
vectors in the E-step and the estimates of class-related parameters in the M-step. In the experiments with
remotely sensed data, the MRF-based method vielded a spatially smooth class-map with more distinctive

configuration of the classes than the non-MRF approach.
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1. Introduction

One of the most problems in image processing
involves allocating the pixels in a given image to a
number of classes according to their statistical
properties. In statistical image classification, Markov
random field (MRF) models (Kindermann and Snell,
1982) have been used for over a decade to
characterize geophysical connectedness. The MRF
represents the local characteristics of image structure
such that neighboring pixels have a higher probability
of being of the same class. Image classification based
on an MRF has been used extensively for analysis of
textured images in computer vision (Bouman and
Liu, 1991; Manjunath and Chellappa, 1991; Won and
Derin, 1992; Nguyen and Cohen, 1993; Kervrann and
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Heitz, 1995; Panjwani and Healey, 1995; Andrey and
Tarroux, 1998). In this approach, different textures
are represented with various statistical models of the
MRF; a.Gaussian Markov random field model
(Manjunath and Chellappa, 1991; Won and Derin,
1992; Nguyen and Cohen, 1993; Panjwani and
Healey, 1995), an augmented state-MRF model
(Kervrann and Heitz, 1995), a casual Gaussian
autoregressive random field model (Bouman and Liu,
1991), and a generalized Ising model (Andrey and
Tarroux, 1998). Recently, the techniques using MRFs
have been utilized in a wide range of application
areas including image classification of multispectral
remotely sensed data (Yamazaki and Gingras, 1999;
Hazel, 2000; Sarkar et al., 2002), data generated in

real time processing environment (Sziranyi et al.,
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2000), video sequences (Kim et al., 2000), and high
resolution sonar imagery (Mignotte et al., 2000). Lee
and Crawford (2005) introduced an MRF-based
unsupervised segmentation methods using
hierarchical clustering with Bayesian similarity
measure. In Lee and Crawford’s approach, a
multiwindow operation using the boundary blocking
was employed to alleviate computational
intensiveness of hierarchical clustering.

The fuzzy classification is an EM (expected
maximization) iterative approach based on mixture
probability distribution (Liang et al., 1992). Under the
assumption of a double compound stochastic image
process, given an initial class map, this approach
iteratively computes the fuzzy membership vectors in
the E-step and the maximum likelihood estimates of
class-related parameters in the M-step, and when
satisfying a convergence condition, generates the
optimal class map according to the fuzzy membership
vectors. In the double compound image model, the
MREF is used to quantify the spatial continuity or
smoothness probabilistically, that is, to provide a type
of prior information on the region-class process for
image classification.

The paper is organized as follows. Section 2
contains a description of the image model associated
with the MRF. The fuzzy classification algorithm for
image classification is described in Section 3.
Experimental results with high-resolution
panchromatic and multispectral remotely sensed data
are reported in Section 4. Finally, conclusions are

stated in Section 5.

2. MRF-based Image Model

A double compound stochastic image process is
assumed to combine a discrete-valued field for

region-class processes and a continuous random field

for observed intensity processes. The MRF is
incorporated into digital image analysis by viewing
pixel types as states of molecules in a lattice-like
physical system defined on a Gibbs random field
(GRF) (Georgii, 1979). Due to the MRF-GRF
equivalence, the assignment of an energy function to
the physical system determines its Gibbs measure,
which is used to model molecular interactions, and
thus this assignment also determines the MRF. Let I,
= {1, 2, ---, N} be the set of indices of pixels in the
image. If R; is the index set of neighbors of the ith
pixel, R = {R; | i € I,,} is a “neighborhood system”
for I,. A “clique” of {I,, R}, ¢ is a subset of I, such .
that every pair of distinct indices in ¢ represents
pixels which are mutual neighbors, and C denotes the
set of all cliques. A GREF relative to the graph {I,,, R}
on @ is defined as

P(@) =7 exp{-E(w)}

Ew)= cg() V{w) (energy function) (1)

where z is a normalizing constant and V. is a potential
function which has the property that it depends only
on @ and c. Specification of C and V, is sufficient to
formulate a Gibbs measure for the region-class model.
A particular class of GRF, in which the energy
function is expressed in terms of “pair-potentials”, is
used in this study. The pair-potentials are a family of
symmetric functions {V,(G, j) | (;, j) C 1,} satisfying
Vi, ) = Vo, D and V,(i, ) =0 if i=jor (i, j) & C,
where C,, is the pair-clique system (see Fig. 1).

It is natural that neighboring pixels with closer
intensity levels have a higher probability of being the
same class. Based on this idea, spatial continuity can be

guantified for image processes with the pair-potentials
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Fig. 1. Pair-clique system for second order.
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that are functions of a distance between the neighboring
pixels in the mean intensity (@), which is a mapping
function of ® into real intensity values. The energy
function of the MRF is specified in terms of a quadratic
function of ) to define the probability structure of
the region-class process for the segmentation: if [v]?
denotes the vector whose elements are squared values

of each element of vector v,

— N N2
E(0)= @ﬂZECPa @) = )] )

where @ is the class of the ith pixel, ((y;) is the mean
intensity vector of class w;, and ¢ is a non-negative
coefficient vector, which represents the “bonding
strength” of the ith and the jth pixels.

Without generalization, the observed intensity
processes are usually assumed to be Gaussian, and
using the MRF associated with the energy function of
Eq. (2) for region-class processes, the posterior joint
distribution of the class vector @ and the observed

intensity process X is then

X, ) =fX | o)fw)oc
exp{-X - LT (@)X - W) - E @)} 3)

where X{w) is the covariance matrix of the observed
intensity process. If £2 is the set of all possible class

configurations,
JQ flwydo =1

and the conditional probability is then

fXlw)= /27 E0 exp{-Xu(@) T (@)X -UOHE@)} (4)

3. Fuzzy Classication

Consider a problem classifying the image of I, in
K classes and let the data vector of pixel j, x;, be
associated with an unobserved image class &, which is
to be estimated. This association between x; and class

k can be specified completely with an unobserved

MRF-based Fuzzy Classification Using EM Algorithm
indicator vectors, s; = {sy;, k =1, -+, K}. In ideal
situation, the kth element of s; has unit value and all
the other elements are zero if region m belongs to
class k. The mixture probability distribution of the

complete data set Z = {xj, sj} is then expressed as

FZIW,0)= H H wilfi(x; 1 ) §))

=l k=1

where W = {wy} represents the weights of the
components {f;} in the mixture distribution, 2wy =1,
and @ = {(w), X(w)} is the set of parameters that
define the classes. The fuzzy procedure calculates the
indicator variables {s;;} as fuzzy vectors in the E-
step, and the likelihood of W and & is maximized in
the M-step using {s;;} estimated in the E-step (Ling
et al., 1992). For the assumption of additive Gaussian
image mode], EM iterative approach to compute the

fuzzy vector is summarized in Fig. 2.

* E-step - Calculating Indicator Vectors.
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Fig. 2. EM iterative approach of fuzzy classification.
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4. Experiments

The proposed MRF-based fuzzy classification was
first evaluated using simulation data generated by the
Monte Carlo method. The methodology was then
applied to LANDSAT ETM+ and IKONOS data
acquired from two regions on the Korean peninsula
respectively.

The 8-bit simulation images of 3 bands were
generated using one pattern by adding white Gaussian

noise, whose variance is pixel-independent and region-

N -
~ . « R s

o= 0.006 (7.8%) o= 0.041 (9.1%)

Fig. 3. Pattem of simulation images and error maps of fuzzy
classification where misclassified pixels are represented
with black dots and error percentages are shown in
parenthesis (**: the result using the 2nd order MRF).

dependent. Thus, the region-class process is
characterized by the mean and variance of intensity
values. The image pattern of 5 classes, which were
used in this section for evaluation of the algorithm, is
illustrated in Fig. 3. Fig. 3 also contains the maps of
classification errors generated by the fuzzy
classifications using different parameters. In the error
maps, the misclassified pixels are represented with
black. It clearly shows that the MRF-based method is
superior to the non-MRF one. In this experiment, the
bonding strength coefficients were estimated under the
fact that the class variables should be determined such
that the corresponding mean intensity fits the observed
data in the image classification (Lee and Crawford,
2005), and applied to the classification with being
multiplied by different constants. As shown in Fig. 3,
the MRF-based scheme yielded a predominant result
for an appropriate coefficient, and the classification
results were more dependent on the values than the
MREF order of the coefficients.

The fuzzy classification was applied for LANDSAT
ETM+ data observed from Yongin/Nungpyung area in
Kyunggi-do, Korea. The image data has 1402 X 1920
pixels of 3 bands (Green, Red, NIR). Fig. 4 displays
the results of 4 classes generated by the fuzzy
classification of non-MRF and MRF for a sub-area of

Yongin/Nungpyung respectively. The MRF-based

Fig. 4. Classification results of 4 classes using LANDSAT
ETM+ data observed from Yongin/Nungpyung area in
Kyunggi-do, Korea.

—420-



MRF-based Fuzzy Classification Using EM Algorithm

Fig. 5. IKONO panchromatic image observed from Kangnam
area in Seoul, Korea and classified map of 4 classes by
non-MRF fuzzy classification.

scheme produced more distinctive configuration of the
classes than the non-MRF approach. It is more clear in
the results generated when applying to a set of
IKONOS data acquired over Kangnam area in Seoul,
Korea, which has a panchromatic band of 3096 X
3456. Fig. 5 contains the observed image and the result
of non-MRF fuzzy approach, and Fig. 6 displays the
results generated by the MRF-based EM approach
with different number of iterations. For the images of
complex ground cover types such as for the data
observed from urban area, the small number of
iterations may be more appropriate for the EM

approach.

5. Conclusions

The experiments with simulation data show that the
use of contextual information definitely improves the
quality of the classification results for noisy images,
and results in reducing the misclassification errors in
the inner area of the region, even in the cases where the
non-contextual coefficients have better performance in

overall accuracy for less noisy images. The MRF-

Fig. 6. Classification results of fuzzy classification with 1st-
order MRF according to various number of EM
iterations (from top, 2 iterations, 10 iterations, 20
iterations).

based approach of the proposed algorithm gains an
advantage over the non-MRF classification scheme for
the analysis of the patterns with spatial contiguity. The
best number of classes can be selected at the level with
the maximum ratio of log-likelihood differences in
successive numbers of classes (Lee, 2004).

The MRF-based approach can generate an accurate
class-map with distinctive class-configuration,
especially for spatially continuous imagery. However,
the spatial contextual information of MRF may result
in wrong classification for the images of complicate
(non-smooth) patterns, which comprise target-regions
of very small size. Since the classification results vary
due to the input parameters used for the algorithm by
user, it is difficult to choose the input values for the
best classification. Nevertheless, it is not necessary to

consider this problem too seriously in practical
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applications requiring unsupervised analysis. Without
knowing the “true” image, there is no globally ideal

solution.
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