DOI QR코드

DOI QR Code

Analysis and Design Using LMI Condition for C (sI-A)^{-1} to Be Minimum Phase

C(sI-A)-1B가 최소위상이 될 LMI 조건을 이용한 해석과 설계

  • Published : 2005.11.01

Abstract

We derive a linear matrix inequality(LMI) condition guaranteeing that any invariant zeros of a triple (A, B, C) lie in the open left half plane of the complex plane, i.e. $C(sI-A)^{-1}B$ is minimum phase. The LMI condition is equivalent to a certain constrained Lyapunov matrix equation which can be found in many results relating to stability analysis or control design. We show that the LMI condition can be used to simplify various control engineering problems such as a dynamic output feedback control problem, a variable structure static output feedback control problem, and a nonlinear system observer design problem. Finally, we give some numerical examples.

Keywords

References

  1. S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in system and Control Theory, PA: SIAM, 1994
  2. L. ElGhaoui, and S. Niculescu, 'Robust decision problems in engineering: A linear matrix inequality approach,' in Advances in Linear Matrix Inequality Methods in Control, L. ElGhaoui, and S. Niculescu, eds., PA:Siam, 2000, pp. 3-37
  3. A. R. Galimidi, and B. R. Barmish, 'The constrained Lyapunov problem and its application to robust output feedback stabilization,' IEEE Trans. Automat. Contr., vol. 31, pp. 410-419, 1986 https://doi.org/10.1109/TAC.1986.1104288
  4. D. M. Dawson, Z. Qu, and J. C. Carroll, 'On the state observation and output feedback problems for nonlinear uncertain dynamic systems,' Syst. Control Left., vol. 18, pp. 217-222, 1992 https://doi.org/10.1016/0167-6911(92)90008-G
  5. C. F. Cheng, 'Output feedback stabilization for uncertain systems: constrained Riccati approach,' IEEE Trans. Automat. Contr., vol. 43, pp. 81-84, 1998 https://doi.org/10.1109/9.654890
  6. H. H. Choi, 'Variable structure output feedback control design for a class of uncertain dynamic systems,' Automatica, vol. 38, pp. 335-341, 2002 https://doi.org/10.1016/S0005-1098(01)00211-4
  7. 최한호, 국태용, '크기가 제한된 제어기를 갖는 가변구조제어 시스템의 점근 안정 영역 추정,' 제어자동화시스템 공학 논문지, 제9권, pp. 616-622, 2003 https://doi.org/10.5302/J.ICROS.2003.9.8.616
  8. A. Steinberg, and M. Corless, 'Output feedback stabilization of uncertain dynamical systems,' IEEE Trans. Automat. Contr., vol. 30, pp. 1025-1027, 1985 https://doi.org/10.1109/TAC.1985.1103804
  9. B. L. Walcott, M. J. Corless, and S. H. Zak, 'Comparative study of nonlinear state observation techniques,' Int. J. Control, vol. 45, pp. 2109-2132, 1987 https://doi.org/10.1080/00207178708933870
  10. B. L. Walcott, and S. H. Zak, 'Combined observer-controller synthesis for uncertain dynamical systems with applications,' IEEE Trans. on Systems, Man, and Cybernetics, vol. 18, pp. 88-104, Feb., 1988 https://doi.org/10.1109/21.87057
  11. C. H Huang, P. A. Ioannou, J. Maroulas, and M G. Safonov, 'Design of strictly positive real systems using constant output feedback,' IEEE Trans. Automat. Contr., vol. 44, pp. 569-573, 1999 https://doi.org/10.1109/9.751352
  12. I. Barkana, 'Comments on 'Design of strictly positive real systems using constant output feedback',' IEEE Trans. Automat. Contr., vol. 49, pp. 2091-2093, 2004 https://doi.org/10.1109/TAC.2004.837565
  13. H. H. Choi and T.-Y. Kuc, 'Comments on 'Output feedback stabilization for uncertain systems: constrained Riccati approach',' IEEE Trans. Automat. Contr., vol. 46, pp. 2044, 2001 https://doi.org/10.1109/9.975518
  14. C. T. Chen, Linear System Theory and Design, NY: CBS College Publishing, 1984
  15. G. Gu, 'Stabilizability conditions of multivariable uncertain systems via output feedback control,' IEEE Trans. Automat. Contr., vol. 35, pp. 925-927, 1990 https://doi.org/10.1109/9.58501
  16. K.-S. Kim and Y. Park, 'Equivalence between two solvability conditions for a static output feedback problern,' IEEE Trans. Automat. Contr., vol. 45, pp. 1877, 2000 https://doi.org/10.1109/TAC.2000.880988