An Analytical Study on Prediction of Effective Properties n Porous and Non-Porous Piezoelectric Composites

  • Lee Jae-Kon (School of Mechanical and A utomotive Engineering, Catholic University of Daegu)
  • Published : 2005.11.01

Abstract

Eshelby type micro mechanics model with a newly developed piezoelectric Eshelby tensor is proposed for predicting the effective electroelastic properties of the piezoelectric composite. The model is applied for piezoelectric solids containing both porosities and metal inhomogeneities. The effective electroelastic moduli of the composites such as stiffness, piezoelectric constants, and dielectric constants are predicted by the present model, which are extensively compared with the existing experimental results from the literatures. The validity of Eshelby type model for predicting the effective properties of the composite is thoroughly examined. It can be concluded from this study that a new mechanism is needed to compute correctly the dielectric constants among the effective properties of the composites.

Keywords

References

  1. Dunn, M. L. and Taya, M., 1993a, 'An Analysis of Piezoelectric Composite Materials Containing Ellipsoidal Inhomogeneities,' Proc. R. Soc. Lond., Vol. A443, pp. 265-287
  2. Dunn, M. L. and Taya, M., 1993b, 'Micromechanics Predictions of the Effective Electr oelastic Moduli of Piezoelectric Composites,' Int. J. Solids Structures, Vol. 30, No. 2, pp. 161-175 https://doi.org/10.1016/0020-7683(93)90058-F
  3. Dunn, M. L. and Taya, M. J., 1993c, 'Electromechanical Properties of Porous Piezoelectric Ceramics,' Am. Ceram. Soc., Vol. 76, No. 7, pp.1697-1706 https://doi.org/10.1111/j.1151-2916.1993.tb06637.x
  4. Dunn, M. L. and Wienecke, H. A., 1997, 'Inclusion and Inhomogeneities in Transversely Isotropic Piezoelectric Solids,' Int. J. Solids Structures, Vol. 34, No. 27, pp. 3571-3582 https://doi.org/10.1016/S0020-7683(96)00209-0
  5. Eshelby, J. D., 1957, 'The determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems,' Proc. R. Soc. Lond., Vol. A241, pp. 376-396 https://doi.org/10.1098/rspa.1957.0133
  6. Huang, J. H. and Yu, J. S., 1994, 'Electroelastic Eshelby Tensors for an Ellipsoidal Piezoelectric Inclusion,' Composites Engineering, Vol. 4, No. 11, pp. 1169-1182 https://doi.org/10.1016/0961-9526(95)91290-W
  7. Huang, J. H. and Kuo, W. S., 1996, 'Micromechanics Determination of the Effective Properties of Piezoelectric Composites Containing Spatially Oriented Short Fibers,' Acta Mater., Vol. 44, No. 12, pp.4889-4898 https://doi.org/10.1016/S1359-6454(96)00090-0
  8. Kuo, W. S. and Huang, J. H., 1997, 'On the Effective Electroelastic Properties of Piezoelectric Composites Containing Spatially Oriented Inclusions,' Int. J. Solids Structures, Vol. 34, No. 19, pp. 2445-2461 https://doi.org/10.1016/S0020-7683(96)00154-0
  9. Kwon, S. M. and Lee, K. Y., 2004, 'Dynamic Response of an Anti-plane Shear Crack in a Functionally Graded Piezoelectric Strip,' KSME International Journal, Vol. 18, No. 3, pp.419 https://doi.org/10.1007/BF02996107
  10. Li, J. F., Takagi, K., Terakubo, N. and Watanabe, R., 2001, 'Electrical and Mechanical Properties of Piezoelectric Ceramic/Metal Composites in the Pb(Zr, Ti) 03/Pt System,' Applied Physics Letters, Vol. 75, No. 15, pp. 2441-2443 https://doi.org/10.1063/1.1403662
  11. Li, J. F., Takagi, K., Ono, M., Pan, W., Watanabe, R., Almajid, A. and Taya, M., 2003, 'Fabrication and Evaluation of Porous Piezoelectric Ceramics and Porosity-Graded Piezoelectric Actuators,' Journal of American Ceramic Society, Vol. 86, No. 7, pp. 1094-1098 https://doi.org/10.1111/j.1151-2916.2003.tb03430.x
  12. Michelitsch, T. and Levin, V. M., 2000, 'Inclusions and Inhomogeneities in Electroelastic Media with Hexagonal Symmetry,' Eur. Phys. J. B, Vol. 14, pp. 527-533 https://doi.org/10.1007/s100510051062
  13. Mikata, Y., 2001, 'Explicit Determination of Piezoelectric Eshelby Tensors for a Spheroidal Inclusion,' Int. J. of Solids and Structures, Vol. 38, pp. 7045-7063 https://doi.org/10.1016/S0020-7683(00)00419-4
  14. Mori, T. and Tanaka, K., 1973, 'Average Stress in the Matrix and Average Elastic Energy of Materials with Misfitting Inclusions,' Acta Metallurgica, Vol. 21, pp. 571-574 https://doi.org/10.1016/0001-6160(73)90064-3
  15. Takagi, K., Li, J. F., Yokoyama, S., Watanabe, R., Almajid, A. and Taya, M., 2002, 'Design and Fabrication of Functionally Graded PZT /Pt Piezoelectric Bimorph Actuator,' Science and Technology of Advanced Materials, Vol. 3, pp.217 https://doi.org/10.1016/S1468-6996(02)00017-7
  16. Takagi, K., Li, J. F., Yokoyama, S. Y. and Watanabe, R., 2003, 'Fabrication and Evaluation of PZT /Pt Piezoelectric Composites and Functionally Graded Actuators,' Journal of the European Ceramic Society, Vol. 23, pp. 1577-1583 https://doi.org/10.1016/S0955-2219(02)00407-7
  17. Taya, M., Almajid, A., Dunn, M. and Takahashi, H., 2003, 'Design of Bimorph Piezo-Composite Actuators with Functionally Graded Mircrostructure,' Sensors and Actuators, Vol. A107, pp.248
  18. Taylor, T. R., Hansen, P. J., Acikel, B., Pervez, N., York, R. A., Streiffer, S. K. and Speck, J. S., 2002, 'Impact of Thermal Strain on the Dielectric Constant of Sputtered Barium Strontium Titanate Thin Films,' Applied physics letters, Vol. 80, No. 11, pp. 1978-1980 https://doi.org/10.1063/1.1459482
  19. Wu, T. L., 2000, 'Micromechanics Determination of Electroelastic Properties of Piezoelectric Materials Containing Voids,' Materials Science and Engineering, Vol. A280, pp. 320-327 https://doi.org/10.1016/S0921-5093(99)00616-4