Hydroxyapatite-Based Biomaterials for Hard Tissue Applications

  • Kim Hae-Won (Department of Dental Biomaterials School of Dentistry, Dankook University) ;
  • Kim Hyoun-Ee (Research Center for Advanced Materials for Medical Implants Seoul National University)
  • Published : 2005.10.01

Abstract

Over the past few decades, much effort has been made to improve the mechanical and biological performance of HA, in order to extend its range of applications. As a major inorganic component of human hard tissues, hydroxyapatite bioceramic is regarded as being one of the most biocompatible materials. Numerous in vitro and in vivo studies have confirmed its excellent bioactivity, osteoconductivity and bone forming ability. However, because of its poor mechanical properties, its use in hard tissue applications has been restricted to those areas in which it can be used in the form of small sized powders/granules or in the non-load bearing sites. A number of researchers have focused on improving the mechanical and biological performance of HA, as well as on the formulation of hybrid and composite systems in order to extend its range of applications. In this article, we reviewed our recent works on HA-based biomaterials; i) the strengthening of HA with ceramic oxides, ii) HA-based bioactive coatings on metallic implants, iii) HA-based porous scaffolds and iv) HA-polymer hybrids/composites.

Keywords

References

  1. Langer R, Vacanti JP., 'Tissue Engineering', Science, Vol.260, pp.920-6, 1993 https://doi.org/10.1126/science.8493529
  2. Hench LL, Wilson J., An introduction to bioceramics Singapore: World scientific, 1993
  3. Legeros RZ., 'Apatites in biological systems', Prog Cryst Grow Char, Vol.4, pp.1-45, 1981 https://doi.org/10.1016/0146-3535(81)90046-0
  4. Suchanek W, Yoshimura M., 'Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implant', J. Mater. Res., Vol.13, pp.94-117, 1998 https://doi.org/10.1557/JMR.1998.0015
  5. Adolfsson E, Hermansson L., 'Zirconia-fluorapatite materials produced by HIP', Biomaterials, Vol. 20, pp.1263-1267, 1999 https://doi.org/10.1016/S0142-9612(99)00018-6
  6. Kong YM, Kim S, Kim HE., 'Reinforcement of hydroxyapatite bioceramics by addition of $ZrO_2$ coated with $Al_2O_3$', J. Am. Ceram Soc., Vol.82, pp.2963-68, 1999 https://doi.org/10.1111/j.1151-2916.1999.tb02189.x
  7. Delgado JA., 'Zirconia-toughened hydroxyapatite ceramic obtained by wet sintering ', J. Mater Sci. Mater. Med., Vol.10, pp.715-719, 1999 https://doi.org/10.1023/A:1008923121172
  8. Kong YM, Kim DH, Kim HE, Heo SJ, Koak JY., 'Hydroxyapatite-based composite for dental implants: An in vivo removal torque experiment', J. Biomed. Mater. Res. B., Vol. 63, pp. 714-721, 2002 https://doi.org/10.1002/jbm.10392
  9. Kong YM, Bae CJ, Lee SH, Kim HW, Kim HE., 'Improvement in biocompatibility of $ZrO_2-Al_2O_3$ nano-composite by addition of HA', Biomaterials, Vol.26, No.5, pp. 509-517, 2005 https://doi.org/10.1016/j.biomaterials.2004.02.061
  10. Kim HW, Knowles JC, Li LH, Kim HE., 'Mechanical performance and osteoblast-like cellular responses of fluorine-substituted hydroxyapatite and zirconia dense composite', J. Biomed. Mater. Res. A, Vol.72A, pp.258-268, 2005 https://doi.org/10.1002/jbm.a.30219
  11. Kim HW, Kong YM, Kim HE, Kim HM, Ko JS, 'Pressureless sintering, mechanical and biological properties of fluor-hydroxyapatite composites with zirconia', J. Am. Ceram Soc., Vol.86, No.12, pp.2019-26, 2003 https://doi.org/10.1111/j.1151-2916.2003.tb03602.x
  12. Kim HW, Noh YJ, Koh YH, Kim HE, 'Enhanced performance of fluorine substituted hydroxyapatite composites for hard tissue engineering', J. Mater. Sci. Mater. Med., Vol. 14, pp. 899-904, 2003 https://doi.org/10.1023/A:1025638811361
  13. Kim HW, Koh YH, Seo SB, Kim HE, 'Properties of fluoridated hydroxyapatite-alumina biological composites densified with addition of $CaF_2$', Mater. Sci. Eng., C 23, pp.515-521, 2003 https://doi.org/10.1016/S0928-4931(02)00355-7
  14. Kim HW, Koh YH, Yoon BH, Kim HE, 'Reaction sintering and mechanical properties of hydroxyapatite-zirconia composites with calcium fluoride additions', J. Am. Ceram Soc., Vol. 85, No.6, pp.1634-36, 2002 https://doi.org/10.1111/j.1151-2916.2002.tb00328.x
  15. Kim HW, Noh YJ, Koh YH, Kim HE, Kim HM, 'Effect of $CaF_2$ on densification and properties of hydroxyapatite-zirconia composites for biomedical applications', Biomaterials, Vol. 23, pp. 4113-21, 2002 https://doi.org/10.1016/S0142-9612(02)00150-3
  16. Bloebaum RD, Dupont JA, 'Osteolysis from a press-fit hydroxyapatite-coated implant', A case study, J. Arthroplasty, Vol.8, pp.195-202, 1993 https://doi.org/10.1016/S0883-5403(09)80013-2
  17. Jarcho M., 'Retrospective analysis of hydroxyapatite development for oral implant applications', Dent. Clin. North Am., Vol.36, pp.19-26, 1992
  18. Choi JM, Kong YM, Kim S, Kim HE, Hwang CS, Lee IS, 'Formation and characterization of hydroxyapatite coating layer on Ti-based metal implant by electron beam deposition', J. Mater Res., Vol. 14, pp.2980-5, 1999 https://doi.org/10.1557/JMR.1999.0399
  19. Nelea V, Morosanu C, Iliescu M, Mihailescu IN, 'Microstructure and mechanical properties of hydroxyapatite thin films grown by RF magnetron sputtering', Surf Coat Tech, Vol.173, pp.315-22, 2003 https://doi.org/10.1016/S0257-8972(03)00729-1
  20. Choi JM, Kim HE, Lee IS, 'Ion-beam-assisted deposition (IBAD) of hydroxyapatite coating layer on Ti-based metal substrate', Biomaterials, Vol.21, pp.469-73, 2000 https://doi.org/10.1016/S0142-9612(99)00186-6
  21. Brinker CJ, Scherer GW, Sol-gel science: the physics and chemistry of sol-gel processing, San Diego: Academic press, 1990
  22. Kim HW, Li LH, Koh YH, Kim HE, Knowles JC, 'Sol-gel preparation and properties of fluoride-substituted hydroxyapatite powders', J. Am. Ceramic Soc., Vol. 87, No.10, pp. 1939-44, 2004
  23. Kim HW, Kim HE, Knowles JC, 'Improvement of hydroxyapatite sol-gel coating on titanium with ammonium hydroxide addition', J. Am. Ceram Soc., Vol. 88, No.1, pp. 154-159, 2005
  24. Kim HW, Kong YM, Bae CJ, Noh YJ, Kim HE, 'Sol-gel derived fluor-hydroxyapatite biocoatings on zirconia substrate', Biomaterials, Vol. 25, pp. 2919-26, 2004 https://doi.org/10.1016/j.biomaterials.2003.09.074
  25. Kim HW, Knowles JC, Kim HE, 'Sol-gel modified titanium with hydroxyapatite thin films and effect on osteoblast-like cell responses', J. Biomed. Mater Res. A, 2005
  26. Kim HW, Kim HE, Knowles JC, Sol-gel apatite films on titanium implant for hard tissue regeneration, Key Eng Mater, 254/256:423-426, 2004 https://doi.org/10.4028/www.scientific.net/KEM.254-256.423
  27. Kim HW, Kim HE, Knowles JC, 'Fluor-hydroxyapatite sol-gel coating on titanium substrate for hard tissue implants', Biomaterials, Vol. 25, pp. 3351-8, 2004 https://doi.org/10.1016/j.biomaterials.2003.09.104
  28. Kim HW, Knowles JC, Salih V, Kim HE, 'Hydroxyapatite and fluor-hydroxyapatite layered film on titanium processed by a sol-gel route for hard tissue implants', J. Biomed. Mater. Res. B, Vol. 71B, pp.66-76, 2004
  29. Lee EJ, Lee SH, Kim HW, Kong YM, Kim HE. Eung-Je Lee, Su-Hee Lee, 'Fluoridated apatite coatings on titanium obtained by electron-beam deposition', Biomaterials, Vol.26, pp.3843-3851, 2005 https://doi.org/10.1016/j.biomaterials.2004.10.019
  30. Li LH, Kong YM, Kim HW, Noh YJ, Kim YW, Kim HE, Heo SJ, Koak JY, 'Improved biological performance of Ti implants due to surface modification by micro-arc oxidation', Biomaterials, Vol.25, pp.2867-75, 2004 https://doi.org/10.1016/j.biomaterials.2003.09.048
  31. Son WW, Zhu X, Shin HI, Ong JL, Kim KH, 'In vivo histological response to anodized and anodized/hydrothermally treated titanium implants', J. Biomed. Mater. Res. Part B, Vol. 66B, pp. 520-25, 2003
  32. Ishizawa H, Ogino M, 'Formation and characterization of anodic titanium oxide films containing Ca and P', J. Biomed. Mater. Res., Vol. 29, pp.65-72, 1995 https://doi.org/10.1002/jbm.820290110
  33. Kim HW, Koh YH, Li LH, Lee S, Kim HE, 'Hydroxyapatite coatings on titanium substrate with titania buffer layer processed by sol-gel method', Biomaterials, Vol. 25, pp. 2533-8, 2004 https://doi.org/10.1016/j.biomaterials.2003.09.041
  34. Li LH, Kim HW, Lee SH, Kong YM, Kim HE, 'Biocompatibility of titanium implants modified by micro-arc oxidation and hydroxyapatite coating', J. Biomed. Mater. Res. A, Vol.73A, pp. 48-54, 2005
  35. Lee SH, Kim HW, Lee EJ, Li LH, Kim HE, 'Hydroxyapatite-$TiO_2$ Hybrid Coating on Ti Implants', J. Biomater Appl., 2005 https://doi.org/10.1177/0885328202050518
  36. Kim HW, Kim HE, Salih V, Knowles JC, 'Hydroxyapatite and titania sol-gel composite coatings on titanium for hard tissue implants; Mechanical and in vitro biological performance', J. Biomed. Mater. Res. B, Vol. 72B, pp.1-8, 2005
  37. Hancox NM, Biology of bone, Cambridge Univ Press, 1972
  38. Roy DM, Linnehan SK, 'Hydroxyapatite formed coral skeletal carbonate by hydrothermal exchange', Nature, Vol.247, pp.220-2, 1974 https://doi.org/10.1038/247220a0
  39. Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kukoki Y, 'Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis', J. Biochem., Vol.121, pp.317-24, 1977
  40. Kim HW, Lee SY, Bae CJ, Noh YJ, Kim HE, Kim HM, Ko JS, 'Porous $ZrO_2$ scaffold coated with hydroxyapatite with fluorapatite intermediate layer', Biomaterials, Vol. 24, pp. 3277-84, 2003 https://doi.org/10.1016/S0142-9612(03)00162-5
  41. Kim HW, Kim HE, Knowles JC, 'Bioactive porous bone scaffold coated with biphasic calcium phosphates', Key Eng Mater, 254/256, pp.1103-1106, 2004 https://doi.org/10.4028/www.scientific.net/KEM.254-256.1103
  42. Kim HW, Kim HE, Salih V, Knowles JC, 'Dissolution control and cellular responses of calcium phosphate coatings on zirconia porous scaffold', J. Biomed. Mater. Res. A, Vol.68A, pp. 522-530, 2004 https://doi.org/10.1002/jbm.a.20094
  43. Kim HW, Kim HE, Knowles JC, 'Hard-tissue-engineered zirconia porous scaffolds with hydroxyapatite sol-gel and slurry coatings', J. Biomed. Mater. Res. B, Vol. 70B, pp. 270-277, 2004
  44. Kim HW, Georgiou G, Koh YH, Knowles JC, Kim HE, 'Calcium phosphates and glass composite coatings on zirconia for enhanced biocompatibility', Biomaterials, Vol. 25, pp.4203-13, 2004 https://doi.org/10.1016/j.biomaterials.2003.10.094
  45. Kim HW, Kim HE, Knowles JC, 'Mechanical and biological performance of calcium phosphate coatings on porous bone scaffold', J. Am. Ceram. Soc., Vol.87, No.11, pp.2135-8, 2004
  46. Koh YH, Kim HW, Kim HE, Halloran JW, 'Macrochanneled-tetragonal zirconia polycrystals coated by calcium phosphate layer', J. Am. Ceram. Soc., Vol. 86, No.12, pp. 2027-30, 2003 https://doi.org/10.1111/j.1151-2916.2003.tb03603.x
  47. Koh YH, Kim HW, Kim HE, Halloran JW, 'Halloran Fabrication of macrochannelled-hydroxyapatite bioceramic by a coextrusion process', J. Am. Ceram. Soc., Vol. 85, No. 10, pp.2578-80, 2002 https://doi.org/10.1111/j.1151-2916.2002.tb00500.x
  48. Koh YH, Kim HW, Kim HE, Halloran JW, 'Fabrication and compressive strength of macrochannelled tetragonal zirconia polycrystals with calcium phosphate coating layer', J. Mater. Res., Vol. 18, No.9, pp. 2009-12, 2003 https://doi.org/10.1557/JMR.2003.0280
  49. Mann S, 'Ozin GA. Synthesis of inorganic materials with complex form ', Nature, Vol.365, pp.499-505, 1996 https://doi.org/10.1038/365499a0
  50. Boskey AL, 'Will biomimetics provide new answers for old problems of calcified tissues?', Calcif Tiss Int., Vol.63, pp.179-82, 1998 https://doi.org/10.1007/s002239900511
  51. Zerwekh JE, Kourosh S, Schienbergt R, 'Fibrillar collagen-biphasic calcium phosphate composite as a bone graft substitute for spinal fusion', J. Orthop. Res., Vol.10, pp.562-72, 1992 https://doi.org/10.1002/jor.1100100411
  52. Yoon BH, Kim HW, Lee SH, Bae CJ, Koh YH, Kong YM, Kim HE, 'Stability and cellular responses to fluorapatite-collagen composites', Biomaterials, Vol.26, pp.2957-2963, 2005 https://doi.org/10.1016/j.biomaterials.2004.07.062
  53. Farley JR, Wergedal JE, Baylink DJ, 'Fluoride directly stimulates proliferation and alkaline phosphatase activity of bone-forming cells', Science, Vol. 222, pp.330-332, 1983 https://doi.org/10.1126/science.6623079
  54. Kim HW, Knowles JC, Kim HE, 'Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds', J. Biomed. Mater. Res. A, Vol. 72A, pp.136-145, 2005
  55. Kim HW, Knowles JC, Kim HE, 'Porous scaffolds of gelatin-hydroxyapatite nanocomposites by biomimetic approach: Characterization and antibiotic drug release', J. Biomed. Mater. Res. B, Vol. 74B, pp.686-698, 2005
  56. Schiller C, Epple M, 'Carbonated calcium phosphates are suitable pH-stabilising fillers for biodegradable polyesters', Biomaterials, Vol.24, pp.2037-43, 2003 https://doi.org/10.1016/S0142-9612(02)00634-8
  57. Agrawal CM, Athanasiou KA, 'Technique to control pH in vicinity of biodegrading PLA-PGA implants', J.Biomed. Mater. Res., Vol.38, pp.105-114, 1997 https://doi.org/10.1002/(SICI)1097-4636(199722)38:2<105::AID-JBM4>3.0.CO;2-U
  58. Ural E, Kesenci K, Fambri L, Migliaresi C, Piskin E. Poly(D,L-cactide/-caprolactone)/hydroxyapatite composites, Biomaterials, Vol.21, pp. 2147-54, 2000 https://doi.org/10.1016/S0142-9612(00)00098-3
  59. Marra KG, Szem JW, Kumta PN, DiMilla PA, Weiss LE, 'In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering', J. Biomed. Mater. Res., Vol.47, pp.324-35, 1999 https://doi.org/10.1002/(SICI)1097-4636(19991205)47:3<324::AID-JBM6>3.0.CO;2-Y
  60. Kim HW, Knowles JC, Kim HE, 'Effect of biphasic calcium phosphates on drug release and biological and mechanical properties of poly(${\box}$-caprolactone) composite membranes', J. Biomed. Mater. Res. A, Vol. 70A, pp. 467-479, 2004
  61. Kim HW, Knowles JC, Kim HE, 'Development of hydroxyapatite bone scaffold for controlled drug release via poly(${\box}$-caprolactone) and hydroxyapatite hybrid coatings', J. Biomed. Mater. Res. B, Vol. 70B, pp.240-249, 2004
  62. Kim HW, Knowles JC, Kim HE, 'Hydroxyapatite/poly(${\box}$-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery', Biomaterials, Vol. 25, pp. 1279-87, 2004 https://doi.org/10.1016/j.biomaterials.2003.07.003
  63. Kim HW, Lee EJ, Jun IK, Kim HE, Knowles JC, 'Degradation and drug release of phosphate-glass/polycaprolactone biological composites for hard tissue regenerative', J. Biomed. Mater Res. B, 75B, pp. 34-41, 2005
  64. Kim HW, Kim HE, Salih V, Knowles JC, 'Effect of fluoridation of hydroxyapatite in hydroxyapatite-polycaprolactone composites on osteoblast activity', Biomaterials, Vol. 26, pp. 4395-4404, 2005 https://doi.org/10.1016/j.biomaterials.2004.11.008