RECENT PROGRESS ON LASER DRIVEN ACCELERATORS AND APPLICATIONS

  • LEEMANS W. P. (Department of Physics, University of Nevada) ;
  • ESAREY E. (Department of Physics, University of Nevada) ;
  • GEDDES C.G.R. (LOASIS Program, Accelerator & Fusion Research Division, Lawrence Berkeley National Laboratory) ;
  • SCHROEDER C. B. (LOASIS Program, Accelerator & Fusion Research Division, Lawrence Berkeley National Laboratory) ;
  • TOTH CS. (LOASIS Program, Accelerator & Fusion Research Division, Lawrence Berkeley National Laboratory)
  • 발행 : 2005.10.01

초록

Laser driven accelerators promise to provide an alternative to conventional accelerator technology. They rely on the excitation of large amplitude density waves in a plasma by the photon pressure of an intense laser. The density oscillations in which electrons and ions are separated, result in extremely large longitudinal electric fields that can be several orders of magnitude larger than those that are used in today's radio-frequency accelerators. Whereas this principle had been demonstrated experimentally for nearly two decades, it was not until 2004 that the production of high quality electron beams around 100 MeV was demonstrated. Analysis, aided by particle-in-cell simulations, as well as experiments with various plasma lengths and densities, indicate that tailoring the length of the accelerator, together with loading of the accelerating structure with beam, are the keys to production of mono-energetic electron beams. Increasing the energy towards a GeV and beyond will require reducing the plasma density and design criteria are discussed for an optimized accelerator module. The current progress and future directions are summarized through comparison with conventional accelerators, highlighting the unique short and long term prospects for intense radiation sources and high energy accelerators based on laser-drivenplasma accelerators.

키워드

참고문헌

  1. T. Tajima and J. M. Dawson, 'Laser Electron Accelerator,' Phys. Rev. Lett., 43, 267 (1979) https://doi.org/10.1103/PhysRevLett.43.267
  2. A. Modena, Z. Najmudin, A. E. Dangor, C. E. Clayton, K. A. Marsh, C. Joshi, V. Malka, C. B. Darrow, C. Danson, D. Neely, and F. N. Walsh, 'Electron acceleration from the breaking of relativistic plasma waves,' Nature, 377, 606 (1995) https://doi.org/10.1038/377606a0
  3. D. Umstadter, S.-Y. Chen, A. Maksimchuk, G. Mourou, and R. Wagner, 'Nonlinear optics in relativistic plasmas and laser wake field acceleration of electrons,' Science, 273, 472 (1996) https://doi.org/10.1126/science.273.5274.472
  4. E. Esarey, P. Sprangle, J. Krall, and A. Ting, 'Overview of Plasma-Based Accelerator Concepts,' IEEE Trans. Plasma Sci., 24, 252 (1996) https://doi.org/10.1109/27.509991
  5. V. Malka, S. Fritzler, E. Lefebvre, M. M. Aleonard, F. Burgy, J. P. Chambaret, J. F. Chemin, K. Krushelnick, G. Malka, S. P. D. Mangles, Z. Najmudin, M. Pittman, J. P. Rousseau, J. N. Scheurer, B. Walton, and A. E. Dangor, 'Electron acceleration by a wake field forced by an intense ultrashort laser pulse,' Science, 298, 1596 (2002) https://doi.org/10.1126/science.1076782
  6. W. P. Leemans, P. Catravas, E. Esarey, C. G. R. Geddes, C. Toth, R. Trines, C. B. Schroeder, B. A. Shadwick, J. van Tilborg, and J. Faure, 'Electron-yield enhancement in a laser-wakefield accelerator driven by asymmetric laser pulses,' Phys. Rev. Lett., 89, 4802 (2002) https://doi.org/10.1103/PhysRevLett.89.174802
  7. C. B. Schroeder, E. Esarey, C. G. R. Geddes, C. Toth, B. A. Shadwick, J. van Tilborg, J. Faure, and W. P. Leemans, 'Frequency chirp and pulse shape effects in self-modulated laser wakefield accelerators,' Phys. Plasmas, 10, 2039 (2003) https://doi.org/10.1063/1.1560614
  8. M. I. K. Santala, M. Zepf, F. N. Beg, E. L. Clark, A. E. Dangor, K. Krushelnick, M. Tatarakis, I. Watts, K. W. D. Ledingham, T. McCanny, I. Spencer, A. C. Machacek, R. Allott, R. Clarke, and P. A. Norreys, 'Production of Radioactive Nuclides by Energetic Protons Generated from Intense Laser-Plasma Interactions,' Appl. Phys. Lett., 78, 19 (2001) https://doi.org/10.1063/1.1335849
  9. W. P. Leemans, D. Rodgers, P. Catravas, C. G. R. Geddes, G. Fubiani, E. Esarey, B. Shadwick, R. Donahue, and A. Smith, 'Gamma-neutron activation experiments using laser wakefield accelerators,' Phys. Plasmas, 8, 2510 (2001) https://doi.org/10.1063/1.1352617
  10. K. W. D. Ledingham, P. McKenna, and R. P. Singhal, 'Applications for nuclear phenomena generated by ultraintense lasers,' Science, 300, 1107 (2003) https://doi.org/10.1126/science.1080552
  11. W. P. Leemans, C. G. R. Geddes, J. Faure, C. Toth, J. van Tilborg, C. B. Schroeder, E. Esarey, G. Fubiani, D. Auerbach, B. Marcelis, M. A. Carnahan, R. A. Kaindl, J. Byrd, and M. Martin, 'Observation of Terahertz Emission from a Laser-Plasma Accelerated Electron Bunch Crossing a Plasma-Vacuum Boundary,' Phys. Rev. Lett., 91, 074802 (2003) https://doi.org/10.1103/PhysRevLett.91.074802
  12. C. B. Schroeder, E. Esarey, J. van Tilborg, and W. P. Leemans, 'Theory of coherent transition radiation generated at a plasma-vacuum interface,' Phys. Rev. E, 69, 016501 (2004) https://doi.org/10.1103/PhysRevE.69.016501
  13. W. Leemans, S. Chattopadhyay, E.Esarey, A. Zholents, M. Zolotorev, A. Chin, R. Schoenlein, and C. Shank, 'Femtosecond X-ray generation through relativistic electon beamlaser interaction,' Comptes Rendus de l'Academie des Sciences Serie IV Physique Astrophysique, 1, 279 (2000) https://doi.org/10.1016/S1296-2147(00)00149-9
  14. P. Catravas, E. Esarey, and W. P. Leemans, 'Femtosecond x-rays from Thomson scattering using laser wakefield accelerators,' Meas. Sci. Technol., 12, 1828 (2001) https://doi.org/10.1088/0957-0233/12/11/310
  15. E. Esarey, B. Shadwick, P. Catravas, and W. P. Leemans, 'Synchrotron radiation from electron beams in plasmafocusing channels,' Phys. Rev. E, 65, 056505 (2002) https://doi.org/10.1103/PhysRevE.65.056505
  16. A. Rousse, K. T. Phuoc, R. Shah, A. Pukhov, E. Lefebvre, V. Malka, S. Kiselev, F. Burgy, J.-P.Rousseau, D. Umstadter, and D. Hulin, 'Production of a keV X-ray Beam From Synchrotron Radiation in Relativistic Laser-Plasma Interaction,' Phys. Rev. Lett., 93, 135005 (2004) https://doi.org/10.1103/PhysRevLett.93.135005
  17. A. Pukhov and J. Meyer-ter-Vehn, 'Laser wake field acceleration: the highly non-linear brokenwave regime,' Appl. Phys. B, 74, 355 (2002) https://doi.org/10.1007/s003400200795
  18. J. B. Rosenzweig, B. Breizman, T. Katsouleas, and J. J. Su, 'Acceleration and focusing of electrons in two-dimensional nonlinear plasma wake fields,' Phys. Rev. E, 44, R6189 (1991) https://doi.org/10.1103/PhysRevA.44.R6189
  19. S. Mangles, C. Murphy, Z. Najmudin, A. Thomas, J. Collier, A. Dangor, E. Divali, P. Foster, J. Gallacher, C. Hooker, D. Jaroszynski, A. Langley, W. Mori, P. Norreys, F. Tsung, R. Viskup, B. Walton, and K. Krushelnick, 'Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,' Nature, 431, 535 (2004) https://doi.org/10.1038/nature02939
  20. C. G. R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, 'High quality electron beams from a plasma channel guided laser wakefield accelerator,' Nature, 431, 538 (2004) https://doi.org/10.1038/nature02900
  21. J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.-P. Rousseau, F. Burgy, and V. Malka, 'A laser-plasma accelerator producing monoenergetic electron beams,' Nature, 431, 541 (2004) https://doi.org/10.1038/nature02963
  22. W. P. Leemans, C. W. Siders, E. Esarey, N. E. Andreev, G. Shvets, and W. B. Mori, 'Plasma guiding and wakefield generation for second-generation experiments,' IEEE Trans. Plasma Sci., 24, 331 (1996) https://doi.org/10.1109/27.509997
  23. P. Volfbeyn, E. Esarey, and W. P. Leemans, 'Guiding of Laser Pulses in Plasma Channels Created by the Ignitor-Heater Technique,' Phys. Plasmas, 6, 2269 (1999) https://doi.org/10.1063/1.873503
  24. I. Alexeev, T. M. Antonsen, Jr., K. Y. Kim, and H. M. Milchberg, 'Self-Focusing of Intense Laser Pulses in a Clustered Gas,' Phys. Rev. Lett., 90, 103402 (2003) https://doi.org/10.1103/PhysRevLett.90.103402
  25. M. C. Downer, C. Chiu, M. Fomyts'kyi, E. W. Gaul, F. Grigsby, N. H. Matlis, B. Shim, P. J. Smith, and R. Zgadzaj, 'Plasma Channels and Laser Pulse Tailoring for GeV Laser-Plasma Accelerators,' in 'Advanced Accelerator Concepts. Eleventh Workshop,' 647, 654 (2003) https://doi.org/10.1063/1.1524920
  26. S. Y. Tochitsky, R. Narang, C. V. Filip, P. Musumeci, C. E. Clayton, R. B. Yoder, K. A. Marsh, J. B. Rosenzweig, C. Pellegrini, and C. Joshi, 'Enhanced Acceleration of Injected Electrons in a Laser-Beat-Wave-Induced Plasma Channel,' Phys. Rev. Lett., 92, 095004 (2004) https://doi.org/10.1103/PhysRevLett.92.095004
  27. P. Sprangle, B. Hafizi, J. R. Penano, R. F. Hubbard, A. Ting, C. I. Moore, D. F. Gordon, A. Zigler, D. Kaganovich, and T. M. Antonsen, Jr., 'Wakefield generation and GeV acceleration in tapered plasma channels,' Phys. Rev. E., 63, 056405 (2001) https://doi.org/10.1103/PhysRevE.63.056405
  28. D. J. Spence and S. M. Hooker, 'Investigation of a hydrogen plasma waveguide,' Phys. Rev. E, 63, 015401(R) (2001) https://doi.org/10.1103/PhysRevE.63.015401
  29. A. Zhidkov, J. Koga, T. Esirkepov, T. Hosokai, M. Uesaka, and T. Tajima, 'Optical-fieldionization effects on the propagation of an ultraintense laser pulse in high-Z gas jets,' Phys. Rev. E, 69, 066408 (2004) https://doi.org/10.1103/PhysRevE.69.066408
  30. N. C. Lopes, G. Figueira, L. O. Silva, J. M. Dias, R. Fonseca, L. Cardoso, C. Russo, C. Carias, G. Mendes, J. Vieira, and J. T. , 'Plasma channels produced by a lasertriggered high-voltage discharge,' Phys. Rev. E, 68, 035402 (2003) https://doi.org/10.1103/PhysRevE.68.035402
  31. Y.-F. Xiao, H.-H. Chu, H.-E. Tsai, C.-H. Lee, J.-Y. Lin, J. Wang, and S.-Y. Chen, 'E-cient generation of extended plasma waveguides with the axicon ignitor-heater scheme,' Phys. Plasmas, 11, L21 (2004) https://doi.org/10.1063/1.1695354
  32. B. Cros, C. Courtois, G. Matthieussent, A. D. Bernardo, D. Batani, N. Andreev, and S. Kuznetsov, 'Eigenmodesfor capillary tubes with dielectric walls and ultraintense laser pulse guiding,' Phys. Rev. E, 65, 026405 (2002) https://doi.org/10.1103/PhysRevE.65.026405
  33. P. Sprangle, E. Esarey, J. Krall, and G. Joyce, 'Propagation and Guiding of Intense Laser Pulses in Plasmas,' Phys. Rev. Lett., 69, 2200 (1992) https://doi.org/10.1103/PhysRevLett.69.2200
  34. C. G. Durfee III and H. M. Milchberg, 'Light pipe for high intensity laser pulses,' Phys. Rev. Lett., 71, 2409 (1993) https://doi.org/10.1103/PhysRevLett.71.2409
  35. E. Esarey, P. Sprangle, J. Krall, and A. Ting, 'Self-focusing and guiding of short laser pulses in ionizing gases and plasmas,' IEEE J. Quantum Electron., 33, 1879 (1997) https://doi.org/10.1109/3.641305
  36. W. Horton and T. Tajima, 'Pump depletion in the plasmabeat-wave accelerator,' Phys. Rev. A, 34, 4110 (1986) https://doi.org/10.1103/PhysRevA.34.4110
  37. S. V. Bulanov, I. N. Inovenkov, V. I. Kirsanov, N. M. Naumova, and A. S. Sakharov, 'Nonlinear Depletion of Ultrashort and Relativistically Strong Laser Pulses in an Underdense Plasma,' Phys. Fluids B, 4, 1935 (1992) https://doi.org/10.1063/1.860046
  38. E. Esarey, C. B. Schroeder, B. A. Shadwick, and W. P. Leemans, 'Non-Linear Pump Depletion and Electron Dephasing in Laser Wakefield Accelerators,' in V. Yakimenko, ed., 'Advanced Accelerator Concepts. Eleventh Workshop,' AIP Conf. Proc., Amer. Inst. Phys., 737, 578, New York (2004)
  39. H. M. Milchberg, T. R. Clark, C. G. Durfee III, and T. M. Antonsen, Jr., 'Development and Applications of a Plasma Waveguide for Intense Laser Pulses,' Phys. Plasmas, 3, 2149 (1996) https://doi.org/10.1063/1.871668
  40. R. Rankin, C. E. Capjack, N. H. Burnett, and P. B. Corkum, 'Refraction effects associated with multiphoton ionization and ultrashort-pulse laser propagation in plasma waveguides,' Optics Letters, 16, 835 (1991) https://doi.org/10.1364/OL.16.000835
  41. W. P. Leemans, C. E. Clayton, W. B. Mori, K. A. Marsh, P. K. Kaw, A. Dyson, C. Joshi, and J. M. Wallace, 'Experiments and simulations of tunnel-ionized plasmas,' Phys. Rev. A, 46, 1091 (1992) https://doi.org/10.1103/PhysRevA.46.1091
  42. E. Esarey, R. F. Hubbard, W. P. Leemans, A. Ting, and P. Sprangle, 'Electron injection into plasma wake fields by colliding laser pulses,' Phys. Rev. Lett., 79, 2682 (1997) https://doi.org/10.1103/PhysRevLett.79.2682
  43. C. B. Schroeder, P. B. Lee, J. S. Wurtele, E. Esarey, and W. P. Leemans, 'Generation of Ultrashort Electron Bunches by Colliding Laser Pulses,' Phys. Rev. E, 59, 6037 (1999) https://doi.org/10.1103/PhysRevE.59.6037
  44. G. Fubiani, E. Esarey, C. B. Schroeder, and W. P. Leemans, 'Beat wave injection of electrons into plasma waves using two interfering laser pulses,' Physical Review E, 70, 016402 (2004) https://doi.org/10.1103/PhysRevE.70.016402
  45. C. Nieter and J. Cary, 'VORPAL: a versatile plasma simulation code,' J. Comp. Phys., 196, 448 (2004) https://doi.org/10.1016/j.jcp.2003.11.004
  46. C. G. R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, 'Production of high-quality electron bunches by dephasing and beam loading in channeled and unchanneled laser plasma accelerators,' Phys. Plasmas, 12, 056709 (2005) https://doi.org/10.1063/1.1882352
  47. D. Umstadter, J. K. Kim, and E. Dodd, 'Laser Injection of Ultrashort Electron Pulses into Wakefield Plasma Waves,' Phys. Rev. Lett., 76, 2073 (1996) https://doi.org/10.1103/PhysRevLett.76.2073
  48. R. G. Hemker, K. C. Tzeng, W. B. Mori, C. E. Clayton, and T. Katsouleas, 'Computer simulations of cathodeless high-brightness electron-beam production by multiple laser beams in plasmas,' Phys. Rev. E, 57, 5920 (1998) https://doi.org/10.1103/PhysRevE.57.5920
  49. T. Taguchi, T. M. Antonsen, Jr., and H. M. Milchberg, 'Resonant Heating of a Cluster Plasma by Intense Laser Light,' Phys. Rev. Lett., 92, 205003 (2004) https://doi.org/10.1103/PhysRevLett.92.205003
  50. S. Gordienko and A. Pukhov, 'Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons,' Phys. Plasmas, 12, 043109 (2005) https://doi.org/10.1063/1.1884126
  51. W. B. Mori (2005), private communication