DOI QR코드

DOI QR Code

Effect of Chlorine Dioxide Treatment on Microbial Safety and Quality of Saury during Storage

이산화염소 처리가 꽁치의 저장 기간 중 미생물학적 안전성 및 품질변화에 미치는 영향

  • Kim, Sunkyoung (Dept. of Food Science & Technology, College of Agriculture & Life Sciences, Chungnam National University) ;
  • Ma, Yuhyun (Dept. of Food Science & Technology, College of Agriculture & Life Sciences, Chungnam National University) ;
  • Gu, Kyoungju (Dept. of Food Science & Technology, College of Agriculture & Life Sciences, Chungnam National University) ;
  • Lee, Yunjung (Dept. of Food Science & Technology, College of Agriculture & Life Sciences, Chungnam National University) ;
  • Kim, Eunjung (Dept. of Food Science & Technology, College of Agriculture & Life Sciences, Chungnam National University) ;
  • Song, Kyung-Bin (Dept. of Food Science & Technology, College of Agriculture & Life Sciences, Chungnam National University)
  • 김선경 (충남대학교 식품공학과) ;
  • 마유현 (충남대학교 식품공학과) ;
  • 구경주 (충남대학교 식품공학과) ;
  • 이윤정 (충남대학교 식품공학과) ;
  • 김은정 (충남대학교 식품공학과) ;
  • 송경빈 (충남대학교 식품공학과)
  • Published : 2005.10.01

Abstract

We determined the effect of chlorine dioxide ($ClO_{2}$) treatment on microbial growth and quality of saury. Saury samples were treated with aqueous $ClO_{2}$ at 3, 10, and 50 ppm. After the treatment, saury samples were stored at -20$^{\circ}C$ and 4$ ^{\circ}C$, respectively. Saury samples treated with $ClO_{2}$ had significantly lower total bacterial counts during storage. In particular, treatment of 50 rpm $ClO_{2}$ decreased total bacterial count most significantly among the $ClO_{2}$ treated saury samples. After 4 days, populations of total bacteria for the control reached 6.43 log CFU/g, while the sample treated with 50 ppm of $ClO_{2}$ had 5.47 log CFU/g at the 9th day of storage. $ClO_{2}$ treatment also delayed increase in the population of psychrotrophic bacteria on saury. The pH of saury samples decreased with increase of $ClO_{2}$ concentration. Volatile basic nitrogen (VBN) and thiobarbituric acid reactive substance (TBARS ) values of saury samples increased during storage, regardless of $ClO_{2}$ concentration. Sen-sory evaluation of saury samples showed that treatment with $ClO_{2}$ could improve the quality of saury. These results indicate that $ClO_{2}$ treatment could be useful in improving microbial safety and quality of saury.

꽁치를 이산화염소 용액 처리하여 미생물에 대한 살균 효과와 pH, 지방산패, 휘발성 염기 질소 함량, 관능평가에 대한 이산화염소의 농도별 효과를 측정하였다. 4$^{\circ}C$에서 저장한 꽁치의 초기 미생물수는 이산화염소의 농도에 따른 유의적인 차이 없이 1.8$\∼$2.4 log CFU/g이었으나,저장 기간이 경과함에 따라 뚜렷한 차이를 보여 저장 4일에 대조구의 총균수가 6.43 log CFU/g에 도달한 반면 50 ppm 이산화염소를 처리한 시료에서는 저장 9일에 5.47 log CFU/g의 총균수에 도달하였다 또한 4$^{\circ}C$에서 저장한 꽁치의 저온균수도 저장 기간이 경과할수록 유의적인 차이를 보이며 증가하였고, 저장 4일에 대조구와 3 ppm은 각각 6.72, 6.34 log CFU/g을 나타내었으나, 이산화염소 농도 10 ppm과 50 ppm은 5.02, 4.13 log CFU/g으로 이산화염소 용액의 농도가 증가함에 따라 저온균수가 감소하는 경향을 보였다. -20$^{\circ}C$에서는 저장 마지막 날까지 총균수의 큰 변화를 보이지 않아 신선도 유지가 가능하였다. 꽁치의 pH는 저장 6일에 급격히 증가하여 저장 9일에는 대조구의 pH 7.05, 50 ppm의 이산화염소 처리구에서는 6.73으로 측정되었으며, 휘발성 염기 질소 함량을 측정한 VBN 값은 저장 4일까지 큰 변화를 보이지 않다가, 저장 5일에 증가하여 높은 값을 나타내었다. -20$^{\circ}C$에서 저장한 꽁치의 pH와 VBN 값은 미생물수와 마찬가지로 큰 변화를 보이지 않았다. 지방산패 정도를 측정한 TBARS 값은 저장 기간에 따라 증가하였는데 이산화염소 농도에 따른 큰 차이는 없었고, 관능검사를 실시한 결과 이산화염소 용액의 농도가 증가할수록 평가 점수가 높음을 확인할 수 있었다 따라서 이산화염소 용액의 처리가 꽁치의 미생물학적 안전성을 증가시켜 유통기간을 증대한다고 판단된다.

Keywords

References

  1. Cameron JA, McCaskill C, Kodavanti PRS, Wolfe F, Douglas B, Cameron ME, Desaiah D. 1995. Effects of high cholesterol and n-3 polyunsaturated fish oil diets on tissue and serum lipid composition in male rats. Int J Vit Nutr Res 65: 215-220
  2. Nordoy A, Hatcher LF, Ullman DL, Connor WE. 1993. Individual effects of dietary saturated fatty acids and fish oil on plasma lipids and lipoproteins in normal men. Am J Clin Nutr 57: 634-639 https://doi.org/10.1093/ajcn/57.5.634
  3. Medina AR, Gimenez AG, Camacho FG, Perez JAS, Grima EM, Gomez AC. 1996. Concentration and purification of stearidonic, eicosapentaenoic, and docosahexaenoic acids from cod liver oil and the marine microalga isocrysis galbana. J Am Oil Chem Soc 72: 575-583
  4. Garcia DJ. 1998. Omega-3 long-chain PUFA nutraceuticals. Food Technol 52: 44-49
  5. Byun HS, Yoon HD, Kim SB, Park YH. 1986. Antioxidative effect of ginger extracts on fish oil. Bull Korean Fish Soc 19: 327-332
  6. 久保道德. 1983. 鯖ぺづタイド 醫學. 彌榮祗業, 京都, 日本. p 7-17
  7. Wei C-I, Chen CM, Koburger JA, Otwell WS, Marshall MR. 1990. Bacterial growth and histamine production on vaccum packaged tuna. J Food Sci 55: 59-63 https://doi.org/10.1111/j.1365-2621.1990.tb06016.x
  8. Okereke A, Beelman RB, Doores S. 1990. Control of spoilage of canned mushrooms inoculated with Clostridium sporogenes PA 3679 spores by acid-blanching. J Food Sci 55: 1331-1333 https://doi.org/10.1111/j.1365-2621.1990.tb03928.x
  9. Shewan JM, Murray CK. 1979. Cold tolerant microbes in spoilage and the environment. In The microbial spoilage of fish with special reference to the role or psychrophiles. Aacademic Press, London. p 117-136
  10. Owusu-yaw J, Toth JP, Wheeler WB, Wei CI. 1990. Mutagenicity and identification of the reaction products of aqueous chlorine or chlorine dioxide with L- tryptophan. J Food Sci 55: 1714-1719 https://doi.org/10.1111/j.1365-2621.1990.tb03607.x
  11. Kraybill HF. 1978. Origin, classification and distribution of chemicals in drinking water with an assessment of their carcinogenic potential. In Water Chlorination. Jolly RL, ed. Ann Arbor Science, Ann Arbor, MI, USA. Vol 1, p 211-228
  12. Kim JM. 2001. Use of chlorine dioxide as a bioxide as a biocide in the food dindustry. Food Ind Nutr 6: 33-39
  13. Gordon G, Kieffer RG, Rosenblatt DH. 1972. The chemistry of chlorine dioxide. In Progress in Inorganic Chemistry. Lippard sJ, ed. J. Wiley and Sons, New York, USA. Vol 15, p 202-286
  14. Moore GS, Calabrese EJ, DiNardi SR, Tuthill RW. 1978. Potential health effect of chlorine dioxide as a disinfectant in potable water supplies. Med Hypotheses 4: 481-496 https://doi.org/10.1016/0306-9877(78)90017-8
  15. Kim JM, Du.W-X, Steven Otwell W, Marshall MR, Wei C-I. 1998. Nutrients in salmon and red grouper fillets as affected by chlorine dioxide ($CIO_2$) treatment. J Food Sci 63: 629-633
  16. Han Y, Linton RH, Nielsen SS, Nelson PE. 2000. Inactivation of Esherichia coli O157:H7 on surface-uninjured and -iniured green pepper (Capsicum annuum L.) by chlorine dioxide gas as demonstrated by confocal laser scanning microscopy. Food Microbol 17: 643-655 https://doi.org/10.1006/fmic.2000.0357
  17. Lee SY, Gray PM, Dougherty RH, Kang DH. 2004. The use fo chlorine dioxide to control Alicyclobacillus acuiotetrestris spores in aqueous suspension and on apples. Int J Food Microbiol 92: 121-127 https://doi.org/10.1016/j.ijfoodmicro.2003.09.003
  18. Singh N, Singh RK, Bhunia AK. 2003. Sequential disinfection of Escherichia coli O157:H7 inoculated alfalfa seeds before and during sprouting using aqueous chlorine dioxide, ozonated water and thyme essential oil. Lebensm- Wiss u-Technol 36: 235-243 https://doi.org/10.1016/S0023-6438(02)00224-4
  19. Andrews LS, Key AM, Martin RL, Grodner R, Park DL. 2002. Chlorine dioxide wash of shrimp and crawfish an alternative to aqueous chlorine. Food Microbiology 19: 261-267 https://doi.org/10.1006/fmic.2002.0493
  20. Kim JM, Huang T-S, Marshall MR, Wei C-I. 1999. Chlorine dioxide treatment of seafoods to reduce bacterial loads. J Food Sci 64: 1089-1093 https://doi.org/10.1111/j.1365-2621.1999.tb12288.x
  21. Jimenez-Villarreal JR, Pohlman FW, Johnson ZB, Brown Jr AH. 2003. Effect of chlorine dioxide, cetylpyridinium chlorine, lactic acid and trisodium phosphate on physical and sensory properties of ground beef. Meat Sci 65: 1055-1062 https://doi.org/10.1016/S0309-1740(02)00320-0
  22. APHA. 1995. Standard methods for the examination of water and wastewater. 19th ed. Method 4-54. American Public Health Association, Washington DC, USA
  23. Buege JA, Aust SD. 1987. Microsomal lipid peroxidation. Methods Enzymol 52: 302-310
  24. Ahn DU, Olson DG, Jo C, Chen X, Wu C, Lee JI. 1998. Effect of muscle type, packaging, and irradiation on lipid oxidation, volatile production, and color in raw pork patties. Meat Sci 49: 27-39 https://doi.org/10.1016/S0309-1740(97)00101-0
  25. 山形誌. 1974. 水産生物化學 食品學實驗書. 恒生社厚生閣版, 東京, 日本. p 291
  26. SAS. 2001. SAS User's Guide. Statistical Analysis Systems Institute Inc., Cary, NC, USA
  27. Singh N, Singh RK, Bhunia AK, Stroshine RL. 2002. Efficacy of chlorine dioxide, ozone, and thyme essential oil or sequential washing in killing Escherichia coli O157:H7 on lettuce and baby carrots. Lebensm- Wiss u-Technol 35: 720-729 https://doi.org/10.1006/fstl.2002.0933
  28. Bernarde MA, Snow WB, Olivieri VO, Davidson B. 1967. Kinetics and mechanism of bacterial disinfection by chlorine dioxide. Appl Microbiol 15: 257-265
  29. Ghanbari HA, Wheeler WB, Kirk JR. 1982. Reactions of aqueous chlorine and chlorine dioxide with lipids: Chlorine incorporation. J Food Sci 47: 482-485 https://doi.org/10.1111/j.1365-2621.1982.tb10108.x
  30. Noss CI, Hauchman FS, Olivieri VP. 1986. Chlorine dioxide reactivity with proteins. Water Res 20: 351-356 https://doi.org/10.1016/0043-1354(86)90083-7
  31. Shenderyuk VI, Bykowski PJ. 1989. Salting and marinating of fish. In Seafood: resources, nutritional composition and preservation. Sikorski ZE, ed. CRC Press, Inc., Boca Raton, Florida, USA
  32. Kim DH. 1990. Food chemistry. Tamgudang, Seoul
  33. Lin W-F, Huang T-S, Cornell JA, Lin C-M, Wei C-I. 1996. Bactericidal acivity of aqueous chlorine and chlorin dioxide solutions in a fish model system. J Food Sci 61: 1030-1034 https://doi.org/10.1111/j.1365-2621.1996.tb10926.x
  34. Sllam KI, Samejima K. 2004. Microbiological and chemical quality of ground beef treated with sodium lactate and sodium chloride during refrigerated storage. Lebensm-Wiss u-Technol 37: 865-871 https://doi.org/10.1016/j.lwt.2004.04.003
  35. Kim JM, Lee YS, O'Keefe SF, Wei C-l. 1997. Effect of chlorine dioxide treatment on lipid oxidation and fatty acid composition in salmon .and red grouper fillets. J Am Oil Chem Soc 74: 539-542 https://doi.org/10.1007/s11746-997-0177-y
  36. Brewer MS, Ikins WG, Harbers CAZ. 1992. TBA values, sensory characteristics and volatiles in ground pork during long-term frozen storage: Effects of packaging. J Food Sci 57: 558-563 https://doi.org/10.1111/j.1365-2621.1992.tb08042.x
  37. Takahashi T. 1935. Distribution of trimethylamine oxide in the piscine and molluscan muscle. Bull Jpn Soc Sci Fish 41: 91-94
  38. Shin SU, Jang MS, Kwon MA, Seo HJ. 2004. Processing of functional mackerel fillet and quality changes during storage. Korean J Food Preservation 11: 22-27
  39. Davies A, Board R. 1998. The microbiology of meat and poultry. Blackie Academic & Professional, London, UK. p 288
  40. Ohashi E, Okamoto M, Ozawa A, Fugita T. 1991. Characterization of common squid using several freshness indicators. J Food Sci 56: 161-163 https://doi.org/10.1111/j.1365-2621.1991.tb08001.x
  41. 野中三力, 僑本芳朗, 高僑豊雄, 須山三千三. 1982. 水産食品學. 恒生社厚生閣, 東京, 日本. p 75-76

Cited by

  1. Changes in Quality of Hanwoo Bottom Round under Different Freezing and Thawing Conditions vol.45, pp.2, 2016, https://doi.org/10.3746/jkfn.2016.45.2.230