DOI QR코드

DOI QR Code

Concentration of Zn, Cu, and Pb in Soils and Accumulation of Its in Plants around Abandoned Mine Vicinity

폐광산 주변 토양의 Zn, Cu, Pb의 함량 및 식물체내 축적

  • Seo Sang-Woo (Department of Environmental Engineering, Miryang National University) ;
  • Moon Sung-Gi (Department of Biology, Kyungsung University) ;
  • Choi Chul-Mann (Basic Science Research Center, Kyungsung University) ;
  • Park Yeon-Kyu (Department of Environmental Engineering, Miryang National University)
  • 서상우 (밀양대학교 환경공학과) ;
  • 문성기 (경성대학교 생물학과) ;
  • 최철만 (경성대학교 기초과학연구소) ;
  • 박연규 (밀양대학교 환경공학과)
  • Published : 2005.10.01

Abstract

This study was conducted to inform basic data for management of abandoned mine that was based on soil heavy metal concentration of the non-rearing and the rearing sites in Guundong Mine which had been completed of improve contamination soils, and examined into standard plant which had tolerances about pollution that analyzed into its accumulated heavy metals contents in the wild plant of naked soil. Consider form the result of contents by depth of soils heavy metals in the non-rearing sites, S1 point judged by contaminated to heavy metals of tailing leach after weathering caused by rainfall and permeate in S1 point soils when restored rest of tailing in 1996 restoration project. Lead of S2 point was not contaminated seriously by restoration and S3 point considered that heavy metals which leach by rainfall in the contaminated soils in mine vicinity accumulated in the abandoned paddy through river When heavy metals of rearing sites soils were examined from the view point of upside of mine point (SP1, SP2, and SP3) of same above the sea level, zinc (537.5 mg/kg) content of SP1 point was highest, and copper (535 mg/kg) and lead (141.5 mg/kg) in the SP3 point were high. To considered as orderly plenty of heavy metals in the plant were respectively in order, Perilla frutescens var. cauta KUDO (SP1 and SP4) >Artemisia princeps PAMPAN (SP2) > Miscanthus sinensis ANDERSSON(SP5) > Vicia angustifolia var. segetilis (THUILL.) K. KOCH. (SP2). Especially, there were plenty of heavy metals in P. frutescens var. acuta, so it judged as a standard plant which have tolerances about heavy metals pollution sites. Therefore, we need more study about the heavy metals accumulate ability of P frutescens var. acuta in future.

식물 비생육지 토양의 깊이별 중금속 함량은 S1지점의 경우 1996년 오염토양 개선사업으로 S1지점 바로 위에다 남은 광미를 복토함으로써 광미 중금속이 강우에 의해 용탈되어 토양에 축적되기 때문에 오염되고 있는 것으로 판단되었고 S2지점은 오염토양 개선사업의 효과로서 표토에서 Zn과 Pb가 토양오염 우려기준을 초과하지 않았으며 Pb의 경우 $30\∼50cm$에서 토양오염 우려기준을 초과한 것은 광맥의 영향 때문이며 구리의 경우는 광산의 채광물로서 오염 정도가 심각하였다. 생육지 토양의 중금속 함량은 같은 표고상에 위치한 광산 위 지점(SP1, SP2, SP3)에서 볼 때 SP1지점에서는 Zn의 함량이 537.5 mg/kg로 가장 높았고, SP3지점에서는 Cu와 Pb의 함량이 가장 높았는데 이는 폐광산에 복토 사업을 했더라도 아직 토양 복원이 완전히 이루어지지 않아 강우와 풍화에 의한 광미의 영향 때문인 것으로 생각되며 SP2지점은 다른 지점보다 지대가 높아 광미의 영향을 적게 받는 것으로 생각된다. 식물체내의 중금속 함량은 차즈기>쑥>억새>살갈퀴 순으로 조사되었고 식물에 의한 연간 중금속 제거율 역시 차즈기가 가장 좋은 것으로 조사되었다. 특히 차즈기는 다량의 중금속이 축적되어 있고 중금속 오염 지역에 내성이 있는 지표종으로 생각될 수 있으며 본 식물의 중금속 축적 능력에 대한 더 많은 연구가 진행되어야 할 것으로 생각된다.

Keywords

References

  1. Bowen, H. J. M. 1979. Environmental chemistry of the elements. pp. 333, Academic Press, New York
  2. Choi, M. K. and M. H. Chiang. 2003. Physiological and biochemial responses, and heavy metal accumulation of Artemisia princeps and Helianthus annuus in the abandoned Zinc mine area for phytoremediation. Kor. J. Hort. Sci. Technol. 21, 451-456
  3. Grill, E., W. Gekeler, E. J. Winnacker and H. H. Zenk. 1986. Homo-phytochelations are heavy metal-binding peptides of homo-glutathione containing fabales. Federation of European Biochemical Societies 205, 47-50 https://doi.org/10.1016/0014-5793(86)80863-8
  4. Hale, M. G. and D. M. Orcutt. 1987. The physiology of plants under stress. pp. 77-92, John Wiley & Sons InC., New York
  5. Jackson, P. J., P. J. Unkefer, E. Delhaize and N. J. Robinson. 1990. Mechanisms of trace metal tolerance in plant. pp. 231-255, In Katterman F. (eds.), Environmental injury to plants, Academic Press Inc., New York
  6. Jung, K. C., 1999. Environment Earth Science. pp. 601, Sigma Press, Seoul
  7. Jung, K. C., B. J. Kim and S. G. Han. 1993. Survey on heavy metals contents in native plant near old zinc-mining sites. Korean J. Environ. Agric. 12, 105-111
  8. Jung, M. C. 1999. Investigation on soil contamination and its remediation system in the vicinity of abandoned Au-Ag mine in Korea. Econ. Environ. Geol. 32, 73-82
  9. Jung, M. C. and I. Thornton. 1996. Heavy metal contamination of soils and plants in the vicinity of a lead-zinc mine, Korea. Applied Geochemistry 11, 53-59 https://doi.org/10.1016/0883-2927(95)00075-5
  10. Kabata-Pendias, A. and H. Pendias. 1992. Trace elements in soils and plants. pp. 315, CRC press, Boca Raton
  11. Kim, H. A., B. H. Bae, Y. Y. Chang and I. S. Lee. 2002. A study on the heavy metal accumulation of plants at iron mines and a military shooting range. Korean J. Ecol. 25, 7-14
  12. Kim, J. K., S. K. Um, S. H. Lee, Y. M. Yoon, C. H. Lee and C. Y. Jeong. 1999. Evaluation of heavy metal pollution and plant survey around inactive and abandoned mining areas for phytoremedation of heavy metal contaminated soils. Korean J. Envrion. Agric. 18, 28-34
  13. Kim, S. H. and H. T. Chon. 1993. Contamination of heavy metals in soil in the vicinity of the Samba pb-zn-barite mine. J. of Mineral and Energy Resources 30, 228-237
  14. Kim, S. T., Y. H. Yoon, J. A. Park and D. S. Shim. 1999. Analysis of mine tailings, field soils, and paddy soils around Jingok abandoned mine. J. of KoSES 4, 175-183
  15. Kloke, A. 1979. Content of arsenic, cadmium, chromium, fluorine, lead, mercury, and nickel in plants grown on contaminated soil. pp. 325. DN-ECE Symp., Geneva
  16. Korea Institute of Geoscience and Mineral Resources. 1964. Geologic map of Korea Yeongsando sheet 6920-il
  17. Lee, J. Y., J. H. Lee and S. Y. Lee. 1996. Geochemical study on pollution of heavy metals in soils, piants and streams in the vicinity of abandoned metal mines -Dalseong and Kyeongsan mines-. Econ. Environ. Geoi. 29, 597-613
  18. Lee, K. C., S. K. Lee, J. H. Han, K. H. Choi and D. Y. Chung. 1999. Distribution of heavy metals in soils around the Keum-Jung mine and remediation. J. of KoSES 4, 25-34
  19. Lee, M. H., H. J. Rhu and Y. S. Suh. 1994. Vertical distribution of heavy metals in paddy soil adjacent to Lead and Zinc mining sites and their relation to soil characteristics. J. of Kor. Soc. Groundwater Environ. 1, 80-84
  20. Lee, T. B. 1980. Illustrated flora of Korea. pp. 990, Hyangmoon publishing Co. Ltd., Seoul
  21. Lee, Y. N. 1996. Flora of Korea. pp. 1237, Kyo-Hak Publishing Co. Ltd., Seoul
  22. Lee, Y. D., J. J. Chung and Y. H. Kwon. 2001. The characteristics of heavy metal contamination in tailings and soils in the vicinity of the Palbong mine, Korea. Econ. Environ. Geoi. 34, 271-281
  23. Ministry of Environment. 1999. Soil Environmental Protection Law
  24. Ministry of Environment. 1996. Standard test method for soil pollution. pp. 480
  25. National Institute of Agricultural Science and Technology. 1988. Methods of soil chemical analysis. pp. 60
  26. Park, C. Y., Y. S. Park and Y. J. Jeong. 1995. Contamination of heavy metals in soil in the Kwangyang mine area. J. of Mineral and Energy Resources 32, 163-174
  27. Park, S. H. 2002. Contamination pattern of soils and surface water in abandoned mine vicinity : Guundong mine in Miryang. pp. 31, Ms. thesis, Miryang National University
  28. Park, Y. H. 1994. Management practices of inactive and abandoned metalliferous mine areas in Korea. Korean Environment Technology & Research. KETRI/1994/ RE-14, Seoul, Korea
  29. Park, Y. S. and J. Kim. 2000. A study on the horizontal and vertical distribution of heavy metal elements in slime dump from Dukum mines, Korea. Econ. Environ. Ceol. 33, 91-100
  30. Robinson, N. J. and P. J. Jackson. 1986. 'Metallothio-like' metal complexes in angiosperms : their structure and function. Physical Plant 67, 499-506 https://doi.org/10.1111/j.1399-3054.1986.tb05770.x
  31. Seo, S. H. and K. H. Cho. 2002. Removal efficiency of heavy metals by Ambrosia triftda in the landfill soils. Korean J. Ecol. 25, 51-55 https://doi.org/10.5141/JEFB.2002.25.1.051
  32. Smilde, K. W. 1981. Heavy metal accumulation in crops grown on sewage sludge amended with metal salts. Plant and Soil 62, 3-14 https://doi.org/10.1007/BF02205020
  33. Thornton, I. 1983. Applied environmental geochemistry. pp. 231-266, Academic presss, London
  34. Yoo, S. H., K. J. Ro, S. M. Lee, M. E. Park and K. H. Kim. 1996. Distribution of cadmium, copper, lead, and zinc in paddy soils around an old zinc mine. J. Korean Soc. Soil Sci. Fert. 29, 424-431

Cited by

  1. Efficiency of Chemical Amendments for Reducing Ecotoxicity in Heavy Metal Polluted Agricultural Fields vol.49, pp.1, 2016, https://doi.org/10.7745/KJSSF.2016.49.1.075