Mass-Spectral Identification of an Extracellular Protease from Bacillus subtilis KCCM 10257, a Producer of Antibacterial Peptide Subtilein

  • SONG HYUK-HWAN (Department of Food Science and Technology, BET Research Institute, Chung-Ang University) ;
  • GIL MI-JUNG (Department of Food Science and Technology, BET Research Institute, Chung-Ang University) ;
  • LEE CHAN (Department of Food Science and Technology, BET Research Institute, Chung-Ang University)
  • Published : 2005.10.01

Abstract

An extracellular protease was identified from Bacillus subtilis KCCM 10257 by N-terminal sequencing and mass spectral analysis. The molecular mass of the extracellular protease was estimated to be 28 kDa by SDS-PAGE. Sequencing of the N-terminal of the protease revealed the sequence of A(G,S,R)QXVPYG(A)V(P,L)SQ. The N-terminal sequence exhibited close similarity to the sequence of other proteases from Bacillus sp. A mass list of the monoisotopic peaks in the MALDI-TOF spectrum was searched after peptide fragmentation of the protease. Six peptide sequences exhibiting monoisotopic masses of 1,276.61, 1,513.67, 1,652.81, 1,661.83, 1,252.61, and 1,033.46 were observed from the fragmented protease. These monisotopic masses corresponded to the lytic enzyme L27 from Bacillus subtilis 168, and the Mowse score was found to be 75. A doubly charged Top product (MS) at a m/z of 517.3 exhibiting a molecular mass of 1034.6 was further analyzed by de novo sequencing using a PE Sciex QSTAR Hybrid Quadropole-TOF (MS/MS) mass spectrometer. MS/MS spectra of the Top product (MS) at a m/z of 517.3 obtained from the fragmented peptide mixture of protease with Q-star contained the b-ion series of 114.2, 171.2, 286.2, 357.2, 504.2, 667.4, 830.1, and 887.1 and y-ion series of 147.5, 204.2, 367.2, 530.3, 677.4, 748.4, 863.4, and 920.5. The sequence of analyzed peptide ion was identified as LGDAFYYG from the b- and y-ion series by de novo sequencing and corresponded to the results from the MALDI-TOF spectrum. From these results the extracellular protease from Bacillus subtilis KCCM 10257 was successfully identified with the lytic enzyme L27 from Bacillus subtilis 168.

Keywords

References

  1. Aunstrup, K. 1979. Production isolation and economics of extracellular enzymes. Appl. Biochem. Bioeng. 2: 27-68
  2. Aunstrup, K., H. Outtrup, O. Andersen, and C. Dambmann. 1972. Proteases from alkalophilic Bacillus species. Proceedings of the Fourth International Fermentation Symposium. Society of Fermentation Technology. Kyoto. Japan, pp. 209-305
  3. Choli, T., U. Kapp, and L. B. Wittmann. 1989. Blotting of proteins onto immobilon membranes. In situ characterization and comparison with high-performance liquid chromatography. J. Chromatogr. 476: 59-72 https://doi.org/10.1016/S0021-9673(01)93856-7
  4. Durham, D. R., D. B. Stewart, and E. J. Stellwag. 1987. Novel alkaline and heat-stable serine proteases from alkalophilic Bacillus sp. strain GX6638. J. Bacteriol. 169: 2762-2768 https://doi.org/10.1128/jb.169.6.2762-2768.1987
  5. Fukushima, J., S. Yamamoto, K. Morihara, Y. Atsumi, H. Takeuchi, S. Kawamoto, and K. Okuda. 1989. Structural gene and complete amino acid sequence of Pseudomonas aeruginosa IFO 3455 elastase. J. Bacteriol. 171: 1698-1704 https://doi.org/10.1128/jb.171.3.1698-1704.1989
  6. Holt, J. G., N. R. Krieg, P. H. A. Sneath, J. T. Staley, and S. T. Williams. 1994. Bergey's Manual of Determinative Bacteriology, 9th Ed. Williams and Wilkins, Baltimore, U.S.A
  7. Horikoshi, K. and T. Akiba. 1982. Alkalophilic Microorganisms. A New Microbial World. Springer-Verlag, New York, U.S.A
  8. Jadwiga, K. S. 1997. Purification and partial characterization of a neutral protease from a virulent strain of Bacillus cereus. Int. J. Biochem. Cell Biol. 30: 579-595 https://doi.org/10.1016/S1357-2725(98)00007-7
  9. Jang, J. S., D. O. Kang, K. S. Park, and S. M. Byun. 1993. Purification and characterization of recombinant Bacillus stearothermophilus subtilisin. J. Kor. Biochem. 26: 595-601
  10. Keay, L., P. W. Moser, and B. S. Wildi. 1970. Proteases of the genus Bacillus. II. Alkaline proteases. Biotech. Bioeng. 12: 213-249 https://doi.org/10.1002/bit.260120206
  11. Kwon, Y. T., S. Y. Moon, J. O. Kim, Y. H. Kho, and H. M. Rho. 1992. Characterization of extracellular proteases from alkalophilic Vibrio sp. strain RH530. Kor. J. Microbiol. 30: 501-506
  12. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  13. Lee, M. H., J. J. Song, Y H. Choi, S. P. Hong, E. Rha, H. K. Kim, S. G. Lee, H. Poo, S. C. Lee, Y B. Seu, and M. H. Sung. 2003. High-level expression and secretion of Bacillus pumilus lipase B26 in Bacillus subtilis Chungkookjang. J. Microbiol. Biotechnol. 13: 892-896
  14. Lee, S. H., J. M. Kim, Y. T. Kwon, Y. H. Kho, and H. M. Rho. 1992. Cloning, sequencing and expression of an extracellular protease gene from Serratia marcescens RH1 in Escherichia coli. Kor. J. Microbiol. 30: 507-513
  15. Lin. X., C. Lee, E. S. Casale, and J. C. H. Shilh. 1992. Purification and characterization of a keratinase from a feather-degrading Bacillus licheniformis strain. Appl. Envir. Microbiol. 58: 3271-3275
  16. Markland, F. S. and E. L. Smith. 1967. Subtilisin BPN'. VII. Isolation of cyanogen bromide peptides and the complete amino acid sequence. J. Biol. Chem. 242: 5198-5211
  17. Moon, S. Y., T. K. Oh, and H. M. Rho. 1994. Purification and characterization of an extracellular alkaline protease from Bacillus subtilis RM 615. Kor. Biochem. 27: 323-329
  18. Nakahama, K., K. Yoshimura, R. Marumoto, K. Mosakazu, J. S. Lee, T. Hase, and H. Matsubara. 1986. Cloning and sequencing of serratia protease gene. Nucleic Acids Res. 14: 5843-5855 https://doi.org/10.1093/nar/14.14.5843
  19. Narida, K. 1979. pp. 212-221. In: Biochemistry Databook. Kagakidoujin. Tokyo
  20. Nedkov, P., W. Oberthur, G. Baunitzer, and Z. Hoppe-Seyler's. 1983. Primary structure of subtilisin DY. Physiol. Chem. 364: 1537-1540 https://doi.org/10.1515/bchm2.1983.364.2.1537
  21. Ottesen, M. and I. Sveden. 1970. Proteolytic enzymes. Methods Enzymol. 19: 199-215 https://doi.org/10.1016/0076-6879(70)19014-8
  22. Paik, H. D., S. K. Lee, S. Heo, S. Y. Kim, H. H. Lee, and T. J. Kwon. 2004. Purification and characterization of the fibrinolytic enzyme produced by Bacillus subtilis KCK-7 from Chungkookjang. J. Microbiol. Biotechnol. 14: 829-835
  23. Park, S. Y., Y. J. Yang, Y. B. Kim, J. H. Hong, and C. Lee. 2002. Characterization of subtile in, a bacteriocin from Bacillus suMlis CAU131 (KCCM 10257). J. Microbiol. Biotechnol. 12: 228-234
  24. Priest, F. G. 1977. Extracellular enzyme synthesis in the genus Bacillus. Bacteriol. Rev. 41: 711- 753
  25. Sloma, A., A. Ally, D. Allay, and J. Pero. 1998. Gene encoding a minor extracellular protease in B. subtilis. J. Bacteriol. 170: 5557-5563
  26. Stahl, M. L. and E. Ferrari. 1984. Replacement of the Bacillus subtilis subtilisin structural gene with an in vitro-derived deletion mutation. J. Bacteriol. 158: 411-418
  27. Suh, H. J. and H. K. Lee. 2001. Characterization of a keratinolytic serine protease from Bacillus subtilis KS-1. J. Protein Chem. 20: 165-169 https://doi.org/10.1023/A:1011075707553
  28. Takagi, M., T. Imanaka, and S. Aida. 1985. Nucleotide sequence and promoter region for the neutral protease gene from Bacillus stearothermophilus. J. Bacteriol. 163: 824-831
  29. Vasantha, N., L. D. Thompson, C. Rhodes, C. Banner, J. Nagle, and D. Filpula. 1984. Genes for alkaline protease and neutral protease from Bacillus amyloliquefaciens contain a large open reading frame between the regions coding for signal sequence and mature protein. J. Bacteriol. 159: 811-819
  30. Wells, J. A., E. Ferrari, D. J. Henner, D. A. Estell, and E. Y. Chen. 1983. Cloning, sequencing, and secretion of Bacillus amyloliquefciens subtilisin in Bacillus subtilis. Nucleic Acids Res. 11: 7911-7925 https://doi.org/10.1093/nar/11.22.7911
  31. Yang, J. K., I. L. Shilh, Y. M. Tzeng, and S. L. Wang. 2000. Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enzyme Microbiol. Tech. 26: 406-413 https://doi.org/10.1016/S0141-0229(99)00164-7
  32. Yang, M. J., S. H. Jung, E. S. Shin, J. Kim, H. D. Yun, S. L. Wong, and H. Kim. 2004. Expression of a Bacillus subtilis endoglucanase in protease-deficient Bacillus subtilis strains. J. Microbiol. Biotechnol. 14: 430-434
  33. Yang, M. Y., E. Ferrari, and D. J. Hemmer. 1984. Cloning of the neutral protease gene of Bacillus subtilis and the use of the cloned gene to create an in vitro-derived deletion mutation. J. Bacteriol. 160: 15-21