Synergistic Killing Effect of Synthetic Peptide P20 and Cefotaxime on Methicillin-Resistant Nosocomial Isolates of Staphylococcus aureus

  • Jung, Hyun-Jun (Department of Microbiology, College of Natural Sciences, Kyungpook National University) ;
  • Choi, Kyu-Sik (Department of Microbiology, College of Natural Sciences, Kyungpook National University) ;
  • Lee, Dong-Gun (Department of Microbiology, College of Natural Sciences, Kyungpook National University)
  • 발행 : 2005.10.01

초록

The salt resistance of antibacterial activity and synergistic effect with clinically used antibiotic agents are critical factors in developing effective peptide antibiotic drugs. For this reason, we investigated the resistance of antibacterial activity to antagonism induced by NaCl and $MgCl_2$ and the synergistic effect of P20 with cefotaxime. P20 is a 20-residue synthetic peptide derived from a cecropin A (CA)-melittin(ME) hybrid peptide. In this study, P20 was found to have potent antibacterial activity against clinically isolated methicillin-resistant Staphylococcus aureus (MRSA) strains without hemolytic activity against human erythrocytes. The combination study revealed that P20 in combination with cefotaxime showed synergistic antibacterial activity in an energy-dependent manner. We also confirmed the synergism between P20 and cefotaxime by fluorescence-activated flow cytometric analysis by staining bacterial cells with propidium iodide (PI) and bis-(1,3-dibutylbarbituric acid) trimethine oxonol (BOX). This study suggests that P20 may be useful as a therapeutic antibiotic peptide with synergistic effect in combination with conventional antibiotic agents.

키워드

참고문헌

  1. Cormican, M. G. and R. N. Jones. 1996. Emerging resistance to antimicrobial agents in Gram-positive bacteria. Enterococci, Staphylococci and non pneumococcal streptococci. Drugs 51: S6-S12 https://doi.org/10.2165/00003495-199600511-00004
  2. Labischinski, H., K. Ehlert, and B. Berger-Bachi. 1998. The targeting of factors necessary for expression of methicillin resistance in staphylococci. J. Antimicrob. Chemother. 41: 581-584 https://doi.org/10.1093/jac/41.6.581
  3. Broekaert, W., F. Terras, B. P. A. Cammue, and R. Osborne. 1995. Plant defensins: Novel antimicrobial peptides as components of the host defense system. Plant Physiol. 108: 1353-1358 https://doi.org/10.1104/pp.108.4.1353
  4. Zasloff, M. 1992. Antibiotic peptides as mediators of innate immunity. Curr. Opin. Immunol. 4: 3-7 https://doi.org/10.1016/0952-7915(92)90115-U
  5. Mitsuhara, I. 2001. In vitro growth inhibition of human intestinal bacteria by sacrotoxin lA, an insect bactericidal peptide. Biotechnol. Lett. 23: 569-573 https://doi.org/10.1023/A:1010360828591
  6. Zasloff, M. 1987. Magainins, a class of antimicrobial peptides from Xenopus skin: Isolation characterization of two active forms, and partial cDNA sequence of precursor. Proc. Natl. Acad. Sci. USA 84: 5449-5453
  7. Simmaco, M., G. Mignogna, S. Canofeni, R. Miele, M. L. Mangoni, and D. Barra. 1996. Temporins, antimicrobial peptides from the European red frog Rana temporaria. Eur. J. Biochem. 242: 788- 792 https://doi.org/10.1111/j.1432-1033.1996.0788r.x
  8. Ganz, T. and R. I. Lehrer. 1995. Defensins. Pharmac. Ther. 66: 191-205 https://doi.org/10.1016/0163-7258(94)00076-F
  9. Hancock, R. E. W. and D. S. Chapple. 1999. Peptide antibiotics. Antimicrob. Agents Chemother. 43: 1317-1323
  10. Jack, R. W., J. R. Tagg, and B. Ray. 1995. Bacteriocins of Gram-positive bacteria. Microbiol. Rev. 59: 171-200
  11. Sahl, H. G., R. W. Jack, and G. Bierbaum. 1995. Biosynthsis and biological activities of lantibiotics with unique post-translational modifications. Eur. J. Biochem. 230: 827-853 https://doi.org/10.1111/j.1432-1033.1995.tb20627.x
  12. Hancock, R. E. W. 1997. Peptides antibiotics. Lancet 349: 418-422 https://doi.org/10.1016/S0140-6736(97)80051-7
  13. Andreu, D., J. Ubach, A. Boman, B. Wahlin, D. Wade, R. B. Merrifield, and H. G. Boman. 1991. Shortened ceropin A-melittin hybrids: Significant size reduction retains potent antibiotics activity. FEBS Lett. 296: 190-194 https://doi.org/10.1016/0014-5793(92)80377-S
  14. Shin, S. Y, M. K. Lee, K. L. Kim, and K. S. Hahm. 1997. Structure-antitumor and hemolytic activity relationships of synthetic peptides derived from cecropin A-magainin 2 and cecropin A-melittin hybrid peptides. J. Pept. Res. 50: 279¬285
  15. Shin, S. Y, J. H. Kang, and K. S. Hahm. 1999. Structure-antibacterial, antitumor and hemolytic activity relationships of cecropin A-magainin 2 and cecropin A-melittin hybrid peptides. J. Pept. Res. 53: 82-90 https://doi.org/10.1111/j.1399-3011.1999.tb01620.x
  16. Shin, S. Y., J. H. Kang, M. K. Lee, S. Y. Kim, Y. Kim, and K. S. Hahm. 1998. Cecropin A-magainin 2 hybrid peptides having potent antimicrobial activity with low hemolytic effect. Biochem. Mol. Biol. Int. 44: 1119-1126
  17. Lee, D. G., Y. Park, K. S. Hahm, H. H. Lee, Y. H. Moon, and E. R. Woo. 2004. Structure-antiviral activity relationships of cecropin A-magainin 2 hybrid peptide and its analogues. J. Pept. Sci. 10: 298-303 https://doi.org/10.1002/psc.504
  18. Park, Y, D. G. Lee, S. H. Jang, E. R. Woo, H. G. Jeong, D. H. Choi, and K. S. Hahm. 2003. A Leu-Lys-rich antimicrobial peptide: Activity and mechanism. Biochim. Biophys. Acta 1645: 172-182 https://doi.org/10.1016/S1570-9639(02)00541-1
  19. Lee, D. G., Y. Park, P. I. Kim, H. G. Jeong, E. R. Woo, and K. S. Hahm. 2002. Influence on the plasma membrane of Candida albicans by HP (2-9)-magainin 2 (1-12) hybrid peptide. Biochem. Biophys. Res. Commun. 297: 885-889 https://doi.org/10.1016/S0006-291X(02)02230-1
  20. Wade, D., A. Silveira, L. Rollins-Smith, T. Bergman, J. Silberring, and H. Lankinen. 2001. Hematological and antifungal properties of temporin A and a cecropin A-temporin A hybrid. Acta Biochim. Pol. 48: 1185-1189
  21. Merrifield, R. B. 1986. Solid phase synthesis. Science 232: 341-347 https://doi.org/10.1126/science.3961484
  22. Jungblut, P. and B. Thiede. 1997. Protein identification from 2-DE gels by MALDI mass spectrometry. Mass Spectrom. Rev. 16: 145-162 https://doi.org/10.1002/(SICI)1098-2787(1997)16:3<145::AID-MAS2>3.0.CO;2-H
  23. Shin, S. Y., J. H. Kang, D. G. Lee, and K. S. Hahm. 1998. Design of novel antimicrobial peptides based on structure-antibiotic activity relationships of cecropin A, magainin 2 and melittin. J. Biochem. Mol. Biol. Biophys. 4: 135-145
  24. Park, P. J., H. K. Lee, and S. K. Kim. 2004. Preparation of hetero-chitooligosaccharides and their antimicrobial activity on Vibrio parahaemolyticus. J. Microbiol. Biotechnol. 14: 41-47
  25. Giacometti, A., O. Cirioni, F. Barchiesi, M. Fortuna, and G. Scalise. 1999. In vitro activity of cationic peptides alone and in combination with clinically used antimicrobial agents against Pseudomonas aeruginosa. J. Antimicrob. Chemother. 44: 641-645 https://doi.org/10.1093/jac/44.5.641
  26. Hewitt, C. J., R. Franke, A. Max, B. Kossmann, and P. Otterabach. 2004. A study into the anti-microbial properties of an amino functionalised polymer using multi-parameter flow cytometry. Biotechnol. Lett. 26: 549-557 https://doi.org/10.1023/B:BILE.0000021954.82099.a0
  27. Kim, H. J., H. Peter Bennetto, and M. A. Halablab. 2004. Application of flow cytometry to monitoring of liposomal restructuring induced by Listeria monocytogenes. J. Microbiol. Biotechnol. 14: 1099-1102
  28. Lee, D. G, Y. S. Chang, Y. Park, K. S. Hahm, and E. R. Woo. 2002. Antimicrobial effects of ocotillone isolated from stem bark of Ailanthus altisshima. J. Microbiol. Biotechnol. 12: 854-857
  29. Werkmeister, J. A., A. Kirkpatrick, J. A. McKenzie, and D. E. Rivett. 1993. The effect of sequence variations and structure on the cytolytic activity of melittin peptides. Biochim. Biophys. Acta 1157: 50-54 https://doi.org/10.1016/0304-4165(93)90077-L
  30. Park, P. J., J. Y. Je, H. G. Byun, S. H. Moon, and S. K Kim. 2004. Antimicrobial activity of hetero-chitosans and their oligosaccharides with different molecular weights. J. Microbiol. Biotechnol. 14: 317-323
  31. Hayashi, H. and Y. Suzuki. 1998. Regulation of intracellular pH during H+-coupled oligopeptide absorption in enterocytes from guinea-pig ileum. J. Phys. 511: 573-586 https://doi.org/10.1111/j.1469-7793.1998.573bh.x
  32. Houssin, C., D. T. Nguyen, G. Leblon, and N. Bayan. 2002. S-Iayer protein transport across the cell wall of Corynebacterium glutamicum: In vivo kinetics and energy requirements. FEMS Microbiol. Lett. 217: 71-79 https://doi.org/10.1111/j.1574-6968.2002.tb11458.x
  33. Kim, D. H., D. G. Lee, K. L. Kim, and Y. Lee. 2001. Internalization of tenecin 3 by a fungal cellular process is essential for its fungicidal effect on Candida albicans. Eur. J. Biochem. 268: 4449-4458 https://doi.org/10.1046/j.1432-1327.2001.02364.x
  34. Leitch, E. C. and C. D. Willcox. 1999. Elucidation of the antistaphylococcal action of lactoferrin and lysozyme. J. Med. Microbiol. 48: 867-871 https://doi.org/10.1099/00222615-48-9-867
  35. Bals, R., X. Wang, M. Zasloff, and M. J. W. Wilson. 1998. The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc. Natl. Acad. Sci. USA 95: 9541-9546
  36. Dutta, B. P., S. C. Debnath, T. K. MandaI, and A. K. Chakraborty. 2004. Modification of pharmacokinetics of cefotaxime in uranyl nitrate-induced renal damage in black Bengal goats. J. Vet. Sci. 5: 1-3
  37. Conlon, J. M., A. Sonnerend, M. Patel, V. Camasamudram, N. Nowotny, E. Zilahi, S. Iwamuro, P. F. Nielsen, and T. Pal. 2003. A melittin-related peptide from the skin of the Japanese frog, Rana Tagoi, with antimicrobial and cytolytic properties. Biochem. Biophys. Res. Commun. 306: 496-500 https://doi.org/10.1016/S0006-291X(03)00999-9