In Vitro Selection of High Affinity DNA-Binding Protein Based on Plasmid Display Technology

  • Choi, Yoo-Seong (School of Chemical and Biological Engineering, Seoul National University) ;
  • Joo, Hyun (Department of Molecular Physiology, College of Medicine, Inje University) ;
  • Yoo, Young-Je (School of Chemical and Biological Engineering, Seoul National University)
  • Published : 2005.10.01

Abstract

Based on plasmid display technology by the complexes of fusion protein and the encoding plasmid DNA, an in vitro selection method for high affinity DNA-binding protein was developed and experimentally demonstrated. The GAL4 DNA-binding domain (GAL4 DBD) was selected as a model DNA-binding protein, and enhanced green fluorescent protein (EGFP) was used as an expression reporter for the selection of target proteins. Error prone PCR was conducted to construct a mutant library of the model. Based on the affinity decrease with increased salt concentration, mutants of GAL4 DBD having high affinity were selected from the mutant protein library of protein-encoding plasmid complex by this method. Two mutants of (Lys33Glu, Arg123Lys, Ile127Lys) and (Ser47Pro, Ser85Pro) having high affinity were obtained from the first generation mutants. This method can be used for rapid in vitro selection of high affinity DNA-binding proteins, and has high potential for the screening of high affinity DNA-binding proteins in a sequence-specific manner.

Keywords

References

  1. Arnold, F. H. and A. A. Volkov. 1999. Directed evolution of biocatalysts. Curr. Opin. Chem. Biol. 3: 54-59 https://doi.org/10.1016/S1367-5931(99)80010-6
  2. Brien, R. O., B. Dedecker, K. G. Fleming, P. B. Sigler, and J. E. Ladbury. 1998. The effects of salt on the TATA binding protein-DNA interaction from a hyperthermophilic Archaeon. J. Mol. Biol. 279: 117-125 https://doi.org/10.1006/jmbi.1998.1743
  3. Choi, Y. S., S. P. Pack, and Y. J. Yoo. 2005. Development of a protein microarray using sequence specific DNA binding domain on DNA chip surface. Biochem. Biophy. Res. Commun. 329: 1315-1319 https://doi.org/10.1016/j.bbrc.2005.01.167
  4. Cull, M. G., J. F. Miller, and P. J. Schatz. 1992. Screening for receptor ligands using large libraries of pep tides linked to the C terminus of the lac repressor. Proc. Natl. Acad. Sci. USA 89: 1865-1869
  5. Gates, C. M., W. P. C. Stemmer, R. Kaptein, and P. J. Schatz. 1996. Affinity selective isolation of ligands from peptide libraries through display on a lac repressor 'headpiece dimmer'. J. Mol. Biol. 255: 373-386 https://doi.org/10.1006/jmbi.1996.0031
  6. Gromiha, M. M., J. An, H. Kono, M. Oobatake, H. Uedaira, and A. Sarai. 1999. ProTherm: Thermodynamic database for proteins and mutants. Nucleic Acids Res. 27: 286-288 https://doi.org/10.1093/nar/27.1.286
  7. Ha, J.-H., M. W. Capp, M. D. Hohenwalter, M. Baskerville, and M. T. Record. 1992. Thermodynamic stoichiometries of participation of water, cations and anions in specific and non-specific binding of lac repressor to DNA: Possible thermodynamic origins ofthe 'glutamate effect' on protein-DNA interactions. J. Mol. Biol. 228: 252-264 https://doi.org/10.1016/0022-2836(92)90504-D
  8. Hagiwara, H., S. Kunihiro, K. Nakajima, M. Sano, H. Masaki, M. Yamamoto, J. W. Pak, Y. Zhang, K. Takase, I. Kuwabara, I. N. Maruyama, and M. Machida. 2002. Aftinity selection of DNA-binding proteins from yeast genomic DNA libraries by improved e phage display vector. J. Biochem. 132: 975-982 https://doi.org/10.1093/oxfordjournals.jbchem.a003312
  9. Jarrett, H. W. 2000. Temperature dependence of DNA affinity chromatography of transcription factors. Anal. Biochem. 279: 209-217 https://doi.org/10.1006/abio.2000.4489
  10. Kang, T., T. Martings, and I. Sadowski. 1993. Wild type GAL4 binds cooperatively to the GAL1-10 $UAS_{G}$ in vitro. J. Biol. Chem. 268: 9629-9635
  11. Kim, J. H., J. J. Song, B. G Kim, M. H. Sung, and S. C. Lee. 2004. Enhanced stability of tyrosine phenol-lyase from Symbiobacterium toebii by DNA shuffling. J. Microbiol. Biotechnol. 14: 153-157
  12. Kim, K., M. Kim, N. S. Han, and J. Seo. 2002. Display of Bacillus macerans cyclodextrin glucanotransferase on cell surface of Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 12: 411-416
  13. Li, M. 2000. Applications of display technology in protein analysis. Nat. Biotech. 18: 1251-1256 https://doi.org/10.1038/82355
  14. Mergulhao, J., M. Filipe, G A. Monteiro, J. M. S. Cabral, and M. A. Taipa. 2004. Design of bacterial vector systems for the production of recombinant proteins in E. coli. J. Microbiol. Biotechnol. 14: 1-14
  15. Nilsson, M. T. I., M. C. Mossing, and M. Widersten. 2000. Functional expression and aftinity selection of single-chain Cro by phage display: Isolation of novel DNA-binding proteins. Protein Eng. 13: 519-526 https://doi.org/10.1093/protein/13.7.519
  16. Pack, S. P., K. Park, and Y. J. Yoo. 2002. Enhancement of ${\beta}$-glucosidase stability and cellobiose-usage using surface-engineered recombinant Saccharomyces cerevisiae in ethanol production. Biotechnol. Lett. 24: 1919-1925 https://doi.org/10.1023/A:1020908426815
  17. Rebar, E. J. and C. O. Pabo. 1994. Zinc finger phage: Aftinity selection of fingers with new DNA-binding specificities. Science 263: 671-673 https://doi.org/10.1126/science.8303274
  18. Reece, R. J. and M. Ptashne. 1993. Determinants of binding-site specificity among yeast C6 zinc cluster proteins. Science 261: 909-911 https://doi.org/10.1126/science.8346441
  19. Seo, H. S. and S. W. Lee. 2000. In vitro selection of the 2'-fluoro-2'-deoxyribonucleotide decoy RNA inhibitor of myasthenic autoantibodies. J. Microbiol. Biotechnol. 10: 707-713
  20. Speight, R. E., D. J. Hart, J. D. Sutherland, and J. M. Blackburn. 2001. A new plasmid display technology for the in vitro selection of functional phenotype-genotype linked proteins. Chem. Biol. 8: 951-965 https://doi.org/10.1016/S1074-5521(01)00066-7
  21. Vashee, S., H. Xu, S. A. Johnston, and T. Kodadek. 1993. How do Zn2Cys6 proteins distinguish between similar upstream activation sites? Comparison of the in vivo and in vitro DNA-binding specificities of the GAL4 protein. J. Biol. Chem. 268: 24699-24706
  22. Waldo, G. S., B. M. Standish, J. Berendzen, and T. C. Terwilliger. 1999. Rapid protein-folding assay using green fluorescent protein. Nat. Biotech. 17: 691-695 https://doi.org/10.1038/10904