Biological Control of Phytopathogenic Fungi by Bacillus amyloliquefaciens 7079; Suppression Rates are Better Than Popular Chemical Fungicides

  • CHUNG SOOHEE (Research Institute of Biotechnology, Yeungnam University) ;
  • KIM SANG-DAL (Research Institute of Biotechnology, Yeungnam University, Department of Applied Microbiology, College of Natural Resources, Yeungnam University)
  • Published : 2005.10.01

Abstract

Rhizobacteria are actively sought for the substitution of chemical fertilizers and pathogen control agents in environment-friendly sustainable agriculture. To be successfully commercialized in the current Korean market as agriculture biomaterials, microbial agents should exhibit both properties of plant growth promotion and pathogen control. That is, the organism must be a phytostimulator as well as a biocontrol agent. These criteria and the survival rate of a rhizobacterium, Bacillus amyloliquefaciens 7079, in the soil system were investigated to evaluate the suitability for future commercialization. B. amyloliquefaciens 7079-treated seedlings showed $22.8\%$ maximum increase in leaf-length growth, compared with water-treated controls, showing the phytostimulating property. The disease suppression rates of Phytophthora-blight of peppers and Fusarium-wilt of tomatoes by B. amyloliquefaciens 7079 were 1.5 and 2.2 times better, respectively, than by three popular chemical fungicides used in actual agricultural practices to control the respective pathogens. Survival of B. amyloliquefaciens 7079 on the rhizoplane and in the rhizosphere was favorable up to 50 days in the soil system employed. These positive properties show that B. amyloliquefaciens 7079 is likely to be a suitable candidate for commercialization to market as agricultural biomaterials.

Keywords

References

  1. Arias, R. S., M. A. Sagardoy, and J. W. L. van Vuurde. 1999. Spatio-temporal distribution of naturally occurring Bacillus spp. and other bacteria on the phylloplane of soybean under field condition. J. Basic Microbiol. 39: 283-292 https://doi.org/10.1002/(SICI)1521-4028(199912)39:5/6<283::AID-JOBM283>3.0.CO;2-G
  2. Asaka, O. and M. Shoda. 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB 14. Appl. Environ. Microbiol. 62: 4081-4085
  3. Berger, F., L. Hong, D. White, R. Frazer, and C. Leifert. 1996. Effect of pathogen inoculum, antagonist density, and plant species on biological control of Phytophthora and Pythium damping-off by Bacillus subtilis Cotl in high-humidity fogging glasshouses. Phytopathology 86: 428-433 https://doi.org/10.1094/Phyto-86-428
  4. Brannen, P. M. and D. S. Kenney. 1997. Kodiac: A successful biological control product for suppression of soil-borne plant pathogens of cotton. J. Ind. Microbiol. Biotech. 19: 169-171 https://doi.org/10.1038/sj.jim.2900439
  5. Chanway, C. P. and F. B. Holl. 1994. Growth of outplanted lodgepole pine seedlings one year after inoculation with plant growth promoting rhizobacteria. Forest Sci. 40: 238-246
  6. Cho, M.-J., Y-K. Kim, and J.-O. Ka. 2004. Molecular differentiation of Bacillus spp. antagonistic against phytopathogenic fungi causing damping-off disease. J. Microbiol. Biotechnol. 14: 599-606
  7. Faria da Mota, F., A. Nobrega., I. E. Marriel, E. Paiva, and L. Seldin. 2002. Genetic diversity ofPaenibacillus polymyxa populations isolated from the rhizosphere offour cultivars of maize (Zea mays) planted in Cerrado soil. Appl. Soil Ecol. 20: 119-132 https://doi.org/10.1016/S0929-1393(02)00016-1
  8. Garbeva, P., J. A. van Veen, and J. D. van Elsas. 2003. Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE. Microbiol. Ecol. 45: 302-316 https://doi.org/10.1007/s00248-002-2034-8
  9. Ghosh, S., J. N. Penterman, R. D. Little, R. Chavez, and B. R. Glick. 2003. Three newly isolated plant growth-promoting bacilli facilitated the seedling growth of canola, Brassica campertris. Plant Physiol. Biochem. 41: 277-281 https://doi.org/10.1016/S0981-9428(03)00019-6
  10. Girvan, M. S., J. Bullimore, J. N. Pretty, M. Osborn, and A. S. Ball. 2003. Soil type is the primary determinant of the composition of total and active bacterial communities in arable soil. Appl. Environ. Microbiol. 69: 1800-1809 https://doi.org/10.1128/AEM.69.3.1800-1809.2003
  11. Glick, B. R., D. M. Pentrose, and J. Li. 1998. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theor. Biol. 190: 63-68 https://doi.org/10.1006/jtbi.1997.0532
  12. Gouzou, L., D. Cheneby, B. Nicolardot, and T. Heulin. 1995. Dynamics of the diazotroph Bacillus polymyxa in the rhizosphere of wheat (Triticum aestivum L.) after inoculation and its effect on uptake of $^{15}$N-Iabelled fertilizer. Eur. J. Agron. 4: 47-54 https://doi.org/10.1016/S1161-0301(14)80016-6
  13. Hahn, O.-K., E.-T. Lee, and S.-D. Kim. 2001. Isolation of chitinase producing antagonistic bacterium Bacillus amyloliquejaciens 7079 and investigation of media condition in the production of chitinase. Kor. J. Microbiol. Biotechnol. 29: 142-148
  14. Hall. J. A., D. Peirson, S. Ghosh, and B. R. Glick. 1996. Root elongation in various crops by the plant growth promoting rhizobacterium Pseudomonas putida GR 12-2. Isr. J. Plant Sci. 44: 37-42 https://doi.org/10.1080/07929978.1996.10676631
  15. Halverson, L. J., M. K. Clayton, and J. Handelsman. 1993. Population biology of Bacillus cereus UW85 in the rhizosphere offIeld-grown soybeans. Soil Biol. Biochem. 25: 485-493 https://doi.org/10.1016/0038-0717(93)90074-L
  16. Handelsman, J., S. Raffel, E. Mester, L. Wunderlich, and C. Grau. 1990. Biological control of damping-off of alfalfa seedlings with Bacillus cereus UW85. Appl. Environ. Microbiol. 56: 713-718
  17. Hill, D. S., J. I. Stein, N. R. Torkewitz, A. M. Morse, C. R. Howell, J. P. Pachlatko, J. O. Becker, and J. M. Ligon. 1994. Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas fluorescens and role of pyrrolnitrin synthesis in biological control of plant disease. Appl. Environ. Microhiol. 60: 78-85
  18. Holl, F. B., C. P. Chanway, R. Turkington, and R. A. Radley. 1988. Response of crested wheatgrass (Agropyron cristatum L.) perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) to inoculation with Bacillus polymyxa. Soil Biol. Biochem. 20: 19-24 https://doi.org/10.1016/0038-0717(88)90121-6
  19. Howell, C. R. and R. D. Stipanovic. 1979. Control of Rhizoctonia solani on cotton seedlings with Pseudomonas jluorescens with an antibiotic produced by the bacterium. Phytopathology 69: 480-482 https://doi.org/10.1094/Phyto-69-480
  20. Howell, C. R. and R. D. Stipanovic. 1980. Suppression of Pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens Pf-5 and its antibiotic, pyoluteorin. Phytopathology 70: 712-715 https://doi.org/10.1094/Phyto-70-712
  21. Jayaswal, R. K., M. Fernandez, R. S. Upadhyay, L. Visintin, M. Kurz, J. Webb, and K. Rinehart. 1993. Antagonism of Pseudomonas cepacia against phytopathogenic fungi. Curr. Microbiol. 26: 17-22 https://doi.org/10.1007/BF01577237
  22. Jeong, H.-K. and S.-D. Kim. 2003. Isolation of Bacillus megaterium KL39 producing antibiotics for the biological control of Phytophthora capsici. Kor. J. Microbiol. Biotechnol. 31: 235-241
  23. Kim, D.-S., R. J. Cook, and D. M. Weller. 1997. Bacillus sp. L324-92 for biological control of three root diseases of wheat grown with reduced tillage. Phytopathology 87: 559-564 https://doi.org/10.1094/PHYTO.1997.87.5.559
  24. Kim, J.-H., Y-H. Choi, and G.-J. Joo. 2001. Plant growth-promotion effects of antagonistic Bacillus sp. YJ-3 against Fusarium wilt of watermelon-rootstock gourd. Kor. J. Environ. Agric. 20: 57-62
  25. Kim, H.-S., J. Park, S.-W. Choi, K-H. Choi, G. P. Lee, S. J. Ban, C. H. Lee, and C. S. Kim. 2003. Isolation and characterization of Bacillus strains for biological control. J. Microbiol. 41: 196-201
  26. Kleinkauf, H. and H. von Dohren. 1990. Nonribosomal biosynthesis of peptide antibiotics. Eur. J. Biochem. 192: 1-15 https://doi.org/10.1111/j.1432-1033.1990.tb19188.x
  27. Kloepper, J. W., C.-M. Ryu, and S. Zhang. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94: 1259-1266 https://doi.org/10.1094/PHYTO.2004.94.11.1259
  28. Landa, B. B., J. A. Navas-Cortes, and R. M. Jimenez-Diaz. 2004. Influence of temperature on plant-rhizobacteria interactions related to biocontrol potential for suppression of fusarium wilt of chickpea. Plant Pathol. 53: 341-352 https://doi.org/10.1111/j.0032-0862.2004.01008.x
  29. Lee, E.-T. and S.-D. Kim. 1999. Isolation and antifungal activity of the chitinase producing bacterium Serratia sp. 3095 as antagonistic bacterium against Fusarium sp. J. Korean Soc. Agric. Chem. Biotechnol. 42: 181-187
  30. Lee, E.-T., S.-K. Lim, D.-H. Nam, Y.-H. Kang, and S.-D. Kim. 2003. $Pyoverdin_{2112}$ of Pseudomonasfluorescens 2112 inhibits Phytophthora capsici, a red-pepper blight-causing fungus. J. Microbiol. Biotechnol. 13: 415-421
  31. Lee, J.-H. 2001. Present state of commercialization of soil microbial fertilizers in South Korea, pp. 31-45. In: Soil Microbial Fertilizers. Published by Korea Rural Development Administration
  32. Lee, S.-J., J.-Y. Cho, J.-I. Cho, J.-H. Moon, K. D. Park, Y. J. Lee, and K.-H. Park. 2004. Isolation and characterization of antimicrobial substance macrolactin A produced from Bacillus amyloliquefaciens CHO104 isolated from soil. J. Microbiol. Biotechnol. 14: 525-531
  33. Ligon, J., S. Lam, T. GaJfuey, S. Hill, R. Hammer, and N. Torkewitz. 1996. Biocontrol: Modifications for enhanced antifungal activity, pp. 457-462. In G. Stacey, B. Mullin, and P. Gresshoff (eds.). Biology of Plant-Microbe Interactions. International Society for Molecular Plant-Microbe Interactions, St. Paul, Minn
  34. Lim, Y.-B., J.-S. Lee, K.-S. Kyung, C.-S. Kim, G.-S. Oh, Y.-D. Ji, and B.-M. Lee. 2002. Control of tomato diseases by fungicide treatment in water culture and the characteristics of residual chemical agents in the fruits. Kor. J. Pesticide Science 6: 287-292
  35. Lim, H. S., J. M. Lee, and S. D. Kim. 2002. A plant growth-promoting Pseudomonas fluorescens GL20: Mechanism for disease suppression, outer membrane receptors for ferric siderophore, and genetic improvement for increased biocontrol efficacy. J. Microbiol. Biotechnol. 12: 249-257
  36. Maget-Dana, R. and F. Peypoux. 1994. lturins, a special class of pore-forming Iipopeptides: Biological and physicochemical properties. Toxicology 87: 151-174 https://doi.org/10.1016/0300-483X(94)90159-7
  37. McSpadden Gardener, B. B. and A. Driks. 2004. Overview of the nature and application of biocontrol microbes: Bacillus spp. Phytopathology 94: 1244 https://doi.org/10.1094/PHYTO.2004.94.11.1244
  38. McSpadden Gardener, B. B. 2004. Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology 94: 1252-1258 https://doi.org/10.1094/PHYTO.2004.94.11.1252
  39. Murphy, J. F., M. S. Reddy, C.-M. Ryu, J. W. Kloepper, and R. Li. 2003. Rhizobacteria-mediated growth promotion of tomato leads to protection against cucumber mosaic virus. Phytopathology 93: 1301-1307 https://doi.org/10.1094/PHYTO.2003.93.10.1301
  40. Park, J.-H., G.-J. Choi, S.-W. Lee, K.-S. Jang, Y.-H. Choi, Y.-R. Chung, K.-Y. Cho, and J.-C. Kim. 2004. In vivo antifungal activity of pyrrolnitrin isolated from Burkholderia capacia EB215 with antagonistic activity towards Collectotrichum species. Kor. J. Mycol. 32: 31-38 https://doi.org/10.4489/KJM.2004.32.1.031
  41. Peypoux, F., J. M. Bonmatin, and J. Wallach. 1999. Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biotechnol. 51: 553-563 https://doi.org/10.1007/s002530051432
  42. Pieterse, C. M. J., J. A. van Pelt, J. Ton, S. Parchmann, M. J. Mueller, A. J. Buchala, J.-P. Metraux, and L. C. van Loon. 2000. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiol. Molecul. Plant Pathol. 57: 123-134 https://doi.org/10.1006/pmpp.2000.0291
  43. Ramamoorthy, V., R. Viswanathan, T. Raguchander, V. Prakasam, and R. Samiyappan. 2001. Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Protect. 20: 1-11 https://doi.org/10.1016/S0261-2194(00)00056-9
  44. Roberts, D. P., S. M. Lohrke, S. L. F. Meyer, J. S. Buyer, J. H. Bowers, C. J. Baker, W. Li, J. T. de Souza, J. A. Lewis, and S. Chung. 2005. Biocontrol agents applied individually and in combination for suppression of soilborne diseases of cucumber. Crop Protect. 24: 141-155 https://doi.org/10.1016/j.cropro.2004.07.004
  45. Sam brook, J. and D. W. Russell. 2001. Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, U.S.A
  46. Schneider, U., C. Keel, C. Blumer, J. Troxler, G. Defago, and D. Haas. 1995. Amplification of the house keeping sigma factor in Pseudomonasfluorescens CHO enhances antibiotic production and improves biocontrol abilities. J. Bacteriol. 177: 5387-5392 https://doi.org/10.1128/jb.177.18.5387-5392.1995
  47. Seldin, L., A. Soares Rosado, D. W. da Cruz, A. Nobrega, J. D. van Elsas, and E. Paiva. 1998. Comparison of Paenibacillus azotofixans strains isolated from rhizoplane, and non-root-associated soil from maize planted in two different Brazilian soil. Appl. Environ. Microbiol. 64: 3860-3868
  48. Silva, H. S. A., R. S. Romeiro, R. Carrer Filho, J. L. A. Pereira, E. S. G. Mizubuti, and A. Mounteer. 2004. Induction of systemic resistance by Bacillus cereus against tomato foliar diseases under field conditions. J. Phytopathology 152: 371-375 https://doi.org/10.1111/j.1439-0434.2004.00853.x
  49. Thomashow, L. S. and D. M. Weller. 1988. Role of a phenazine antibiotic from Pseudomonas fluorescens 2-97 in biological control of Gaeumannomyces graminis var. tritici. J. Bacteriol. 170: 3499-3508 https://doi.org/10.1128/jb.170.8.3499-3508.1988
  50. Umezawa, H., T. Aoyagi, T. Nishikiori, A. Okuyama, Y. Yamagishi, M. Hamada, and T. Takeuchi. 1986. Plipastatins: new inhibitors of phospholipase $A_{2}$, produced by Bacillus cereus BMG202-fF67. I. Taxonomy, production, isolation and preliminary characterization. J. Antibiot. 39: 737 -744 https://doi.org/10.7164/antibiotics.39.737
  51. Vanittanakom, N., W. Loeffler, U. Koch, and G. Jung. 1986. Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J. Antibiot. 39: 888-901 https://doi.org/10.7164/antibiotics.39.888
  52. Van Loon, L. C., P. A. H. M. Bakker, and C. M. J. Pieterse. 1998. Systemic resistance induced by rhizosphere bacteria. Ann. Rev. Phytopathol. 36: 453-483 https://doi.org/10.1146/annurev.phyto.36.1.453