Relationship Between Fractal Dimension and Morphological Features of Cephalosporium acremonium M25 in a 30-1 Bioreactor Culture

  • Lim Jung-Soo (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim Jung-Mo (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim Jong-Chae (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim Chang-Ho (Bio M&D Co.) ;
  • Yang Dae-Ryook (Department of Chemical and Biological Engineering, Korea University) ;
  • Chang Hyo-Ihl (Graduate School of Biotechnology, Korea University) ;
  • Kim Seung-Wook (Department of Chemical and Biological Engineering, Korea University)
  • Published : 2005.10.01

Abstract

In a 30-1 bioreactor culture, whole differentiation occurred from 48 h, and then proceeded rapidly. As swollen hyphal fragments and arthrospores increased, cephalosporin C (CPC) production increased exponentially to $1.85\;g/1^{-1}$ at 72 h. To explain the morphological changes of Cephalosporium acremonium M25 more quantitatively, specific differentiation rates and fractal analysis were employed. Specific differentiation rates of morphological factors varied greatly during the period of culture time from 48 h to 72 h, when CPC production increased significantly. Changes of fractal dimensions showed a pattern similar to that of the specific rate of arthrospores. Furthermore, it was inversely related to the specific rate of tips. Overall, it was suggested that the fractal dimension had potential for a new morphological parameter of fungal morphology, showing complex differentiation patterns.

Keywords

References

  1. Braun, S. and S. E. Vecht-Lifshitz. 1991. Mycelial morphology and metabolite production. Trends Biotechnol. 9: 63-68 https://doi.org/10.1016/0167-7799(91)90191-J
  2. Cox, P. W. and C. R. Thomas. 1992. Classification and measurement of fungal pellets by automated image analysis. Biotechnol. Bioeng. 39: 945-952 https://doi.org/10.1002/bit.260390909
  3. Huo, C., X. H. Ren, B. P. Liu, Y. R. Yang, and S. X. Rong. 2003. Fractal approach for modeling the morphology evolution of olefin polymerization with heterogeneous catalysis. J. Appl. Polym. Sci. 90: 1463-1470 https://doi.org/10.1002/app.12597
  4. Hwang, E. I., B. S. Yun, S. H. Lee, S. K. Kim, S. J. Lim, and S. U. Kim. 2004. 7-Oxostaurosporine selectively inhibits the mycelial form of Candida albicans. J. Microbiol. Biotechnol. 14: 1067-1070
  5. Justen, P., G. C. Paul, A. W. Nienow, and C. R. Thomas. 1998. Dependence of Penicillium chrysogenum growth, morphology, vacuolation, and productivity in fed-batch fermentations on impeller type and agitation intensity. Biotechnol. Bioeng 59: 762- 775 https://doi.org/10.1002/(SICI)1097-0290(19980920)59:6<762::AID-BIT13>3.0.CO;2-7
  6. Kim, B. M., S. W. Kim, and D. R. Yang. 2003. Cybernetic modeling of the cephalosporin C fermentation process by Cephalosporium acremonium. Biotechnol. Left. 25: 611-616 https://doi.org/10.1023/A:1023080027754
  7. Kim, C. Y., H. J. Park, Y. J. Yoon, H. Y. Kang, and E. S. Kim. 2004. Stimulation of actinorhodin production by Streptomyces lividans with a chromosomally-integrated antibiotic regulatory gene afsR2. J. Microbiol. Biotechnol. 14: 1089-1092
  8. Kim, H. H., J. G. Na, Y. K. Chang, G. T. Chun, S. J. Lee, and Y. H. Jeong. 2004. Optimization of submerged culture conditions for mycelial growth and exopolysaccharides production by Agaricus blazei. J. Microbiol. Biotechnol. 14: 944-951
  9. Lee, M. S., J. S. Lim, C. H. Kim, K. K. Oh, D. R. Yang, and S. W. Kim. 2001. Enhancement of cephalosporin C production by cultivation of Cephalosporium acremonium M25 using a mixture of inocula. Lett. Appl. Microbiol. 32: 402-406 https://doi.org/10.1046/j.1472-765X.2001.00931.x
  10. Lee, M. S., J. S. Lim, C. H. Kim, K. K. Oh, S. I. Hong, and S. W. Kim. 2001. Effects of nutrient and culture conditions on morphology in the seed culture of Cephalosporium acremonium ATCC 20339. Biotechnol. Bioprocess Eng. 6: 156-160 https://doi.org/10.1007/BF02931963
  11. Lim, J. S., J. H. Kim, C. Y. Kim, and S. W. Kim. 2002. Morphological and rheological properties of culture broth of Cephalosporium acremonium M25. Korea-Australia Rheology J. 14: 11-16
  12. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  13. Nielsen, J. and P. Krabben. 1995. Hyphal growth and fragmentation of Penicillium chrysogenum in submerged cultures. Biotechnol. Bioeng. 46: 588-598 https://doi.org/10.1002/bit.260460612
  14. Obert, M., P. Pfeifer, and M. Sernetz. 1990. Microbial growth patterns described by fractal geometry. J. Bacteriol. 172: 1180-1185 https://doi.org/10.1128/jb.172.3.1180-1185.1990
  15. Park, E. Y., T. Hamanaka, and K. Higashiyama. 2002. Monitoring of morphological development of the arachidonic-acid-producing filamentous microorganism Mottierella alpina. Appl. Microbiol. Biotechnol. 59: 706-712 https://doi.org/10.1007/s00253-002-1089-2
  16. Patankar, D. B., T. Liu, and T. Oolman. 1993. A fractal model for the characterization of mycelial morphology. Biotechnol. Bioeng. 42: 571-578 https://doi.org/10.1002/bit.260420504
  17. Ryoo, D. H. 1999. Fungal fractal morphology of pellet formation in Aspergillus niger. Biotechnol. Tech. 13: 33-36 https://doi.org/10.1023/A:1008835529941
  18. Shamlou, P. A., H. Y. Makagiansar, A. P. Ison, and M. D. Lilly. 1994. Turbulent breakage of filamentous microorganisms in submerged culture in mechanically stirred bioreactors. Chem. Eng. Sci. 49: 2621-2631 https://doi.org/10.1016/0009-2509(94)E0079-6
  19. Van Suijdam, J. C. and B. Metz. 1981. Influence of engineering variables upon the morphology of filamentous molds. Biotechnol. Bioeng. 23: 111-148 https://doi.org/10.1002/bit.260230109
  20. Yang, B. K., M. A. Wilson, K. Y. Cho, and C. H. Song. 2004. Hypoglycemic effect of exo- and endo-biopolymer produced by submerged mycelial culture of Ganoderma lucidum in streptozotocin-induced diabetic rats. J. Microbiol. Biotechnol. 14: 972-977