Application of Electrospun Silk Fibroin Nanofibers as an Immobilization Support of Enzyme

  • Lee Ki Hoon (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University) ;
  • Ki Chang Seok (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University) ;
  • Baek Doo Hyun (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University) ;
  • Kang Gyung Don (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University) ;
  • Ihm Dae-Woo (Department of innovative Industrial Technology, Hoseo University) ;
  • Park Young Hwan (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University)
  • Published : 2005.09.01

Abstract

Silk fibroin (SF) nanofibers were prepared by electrospinning and their application as an enzyme immobilization support was attempted. By varying the concentration of SF dope solution the diameter of SF nanofiber was controlled. The SF nanofiber web had high capacity of enzyme loading, which reached to $5.6\;wt\%$. The activity of immobilized a-chymotrypsin (CT) on SF nanofiber was 8 times higher than that on silk fiber and it increased as the fiber diameter decreased. Sample SF8 (ca. 205 nm fiber diameter) has excellent stability at $25^{\circ}C$ by retaining more than $90\%$ of initial activity after 24 hours, while sample SF11 (ca. 320 nm fiber diameter) shows higher stability in ethanol, retaining more than $45\%$ of initial activity. The formation of multipoint attachment between enzyme and support might increase the stability of enzyme. From these results, it is expected that the electrospun SF nanofibers can be used as an excellent support for enzyme immobilization.

Keywords

References

  1. W. Tischer and F. Wedekind, Top. Curr. Chem., 200, 95 (1999) https://doi.org/10.1007/3-540-68116-7_4
  2. Z. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Comp. Sci. Tech., 63, 2223 (2003) https://doi.org/10.1016/S0266-3538(03)00178-7
  3. H. Jia, G. Zhu, B. Vugrinovich, W. Kataphinan, D. H. Reneker, and P. Wang, Biotechnol. Prog., 18, 1027 (2002) https://doi.org/10.1021/bp020042m
  4. J. Xie and Y. Hsieh, J. Mater. Sci., 38, 2125 (2003) https://doi.org/10.1023/A:1023763727747
  5. Y. Wang and Y. Hsieh, J. Polym. Sci. Polym. Chem., 42, 4289 (2004) https://doi.org/10.1002/pola.20271
  6. S. H. Kim, Y. S. Nam, T. S. Lee, and W. H. Park, Polym. J., 35, 185 (2003) https://doi.org/10.1295/polymj.35.185
  7. K. Ohgo, C. Zhao, M. Kobayashi, and T. Asakura, Polymer, 44, 841 (2003) https://doi.org/10.1016/S0032-3861(02)00819-4
  8. S. Sukigara, M. Gandhi, J. Ayutsede, M. Micklus, and F. Ko, Polymer, 44, 5721 (2003) https://doi.org/10.1016/S0032-3861(03)00532-9
  9. S. Zarkoob, R. K. Eby, D. H. Reneker, S. D. Hudson, D. Ertley, and W. W. Adams, Polymer, 45, 3973 (2004) https://doi.org/10.1016/j.polymer.2003.10.102
  10. H. Jin, J. Chen, V. Karageorgiou, G. H. Altman, and D. L. Kaplan, Biomaterials, 25, 1039 (2004) https://doi.org/10.1016/S0142-9612(03)00609-4
  11. B. Min, G. Lee, S. H. Kim, Y. S. Nam, T. S. Lee, and W. H. Park, Biomaterials, 25, 1289 (2004) https://doi.org/10.1016/j.biomaterials.2003.08.045
  12. Y. Zhang, Biotech. Adv., 16, 961 (1998) https://doi.org/10.1016/S0734-9750(98)00012-3
  13. K. H. Lee, G. D. Kang, B. S. Shin, Y. H. Park, and J. H. Nahm, Int. J. Indust. Entomol., 8, 195 (2004)
  14. K. H. Lee, G. D. Kang, B. S. Shin, and Y. H. Park, Fibers and Polymers, 6, 1 (2005) https://doi.org/10.1007/BF02875566
  15. D. Li and Y. Xia, Adv. Mater., 16, 1151 (2004) https://doi.org/10.1002/adma.200400719
  16. K. W. Kim, K. H. Lee, M. S. Khil, Y. S. Ho, and H. Y. Kim, Fibers and Polymers, 5, 122 (2004) https://doi.org/10.1007/BF02902925
  17. P. W. Tardioli, J. Pedroche, R. L. C. Giordano, R. Fernandez- Lafuente, and J. M. Guisan, Biotechnol. Prog., 19, 352 (2003) https://doi.org/10.1021/bp025588n
  18. V. Mozhaev, M. Sergeeva, A. Belova, and Y. Khmelnitsky, Biotech. Bioeng., 35, 653 (1990) https://doi.org/10.1002/bit.260350702