확장된 퍼지 Pr/T네트에서 모호집합 추론

Vague Set Reasoning using Extended Fuzzy Pr/T Nets

  • 조상엽 (청운대학교 인터넷학과)
  • 발행 : 2005.09.01

초록

규칙기반시스템에서 퍼지 생성규칙의 확신도와 규칙에 나타나는 퍼지 술어의 확신도는 0과 1사이의 실수로 표현한다. 만일 퍼지 생성규칙의 확신도와 퍼지 술어의 확신도를 모호집합에 기반을 둔 0과 1사이의 모호숫자와 같은 구간으로 표현한다면, 규칙기반시스템이 더 유연한 방법으로 퍼지추론을 하는 것이 가능하게 된다[18]. 우리는 모호집합 추론을 자동으로 실행하는 효율적인 알고리즘을 제안하였다. 이 모호집합 추론 알고리즘은 규칙기반시스템이 더 유연하고 효율적인 추론을 실행하는 것을 허용한다.

The certainty factors of the fuzzy production rules and the certainty factors of fuzzy propositions appearing in the rules are represented by real values between zero and one. If it can allow the certainty factors of the fuzzy production rules and the certainty factors of fuzzy propositions can be represented by intervals, such as vague numbers between zero and one based on vague sets, then it can allow the reasoning of rule-based systems to perform fuzzy reasoning in more flexible manner[18]. we are also proposed an efficient algorithm to perform vague set reasoning automatically. This vague set reasoning algorithm allows the rule-based systems to perform reasoning in a more flexible and more efficient.

키워드

참고문헌

  1. Zadeh, L. A., 'Fuzzy Sets,' Information and Control 8, pp.338-353, 1965 https://doi.org/10.1016/S0019-9958(65)90241-X
  2. Gau, Wen-Lung, and Buehrer, Daniel J., 'Vague Sets,' IEEE Trans. on SMC, Vol. 23, No. 2, pp.610-614, 1993 https://doi.org/10.1109/21.229476
  3. Chen, Shyi-Ming, 'Arithmetic Operations Between Vague Sets,' Proceedings of the Int'l Joint Conf. of CFSA/IFIS/SOFT'95 on Fuzzy Theory and Applications, Taipei, Taiwan, Republic of China, pp.206-211, 1995
  4. Chen, Shyi-Ming, and Shiau, Y. S., 'Vague Reasoning and Knowledge Representation Using Extended Fuzzy Petri Nets,' J. of Information Science and Engineering, Vol. 14, pp.391-408, 1998
  5. Chen, Shyi-Ming, 'Analyzing Fuzzy System Reliability Using Vague Set Theory,' Int'l J. of Applied Science and Engineering, Vol. 1, pp.82-88, 2003
  6. Urszula, Wybraniec-skardowska, 'Knowledge, Vagueness, and Logic,' Int'l J. Appl, Math. Comput. Sci., Vol. 11, No. 3, pp.719-737, 2001
  7. Yu, Sheng-Ke, 'Knowledge Representation and Reasoning Using Fuzzy Pr/T net-systems,' Fuzzy Sets and Systems, 75, pp.33-45, 1995 https://doi.org/10.1016/0165-0114(94)00326-3
  8. Peterson, J. L., Petri Net Theory and the Modeling of Systems, Prentice-hall, 1981
  9. Chen, Shyi-Ming, 'Weighted Fuzzy Reasoning Using Weighted Fuzzy Petri Nets.' IEEE Trans. on KDE, Vol. 14, No. 2, March/april, pp.386-397, 2002 https://doi.org/10.1109/69.991723
  10. Chen, Shyi-Ming., Ke, J., and Chang, J., 'Knowledge Representation Using Fuzzy Petri-nets,' IEEE Trans. on KDE, Vol. 2, No. 3, Sep., pp.311-319, 1990 https://doi.org/10.1109/69.60794
  11. Looney, G. C., 'Fuzzy Petri Nets for Rule-based Decision Making,' IEEE Trans. on SMC, Vol. 18, No. 1, Jen./Feb., pp.178-183, 1988 https://doi.org/10.1109/21.87067
  12. 조상엽, 김기태, '퍼지페트리네트를 이용한 퍼지생성규칙의 표현', 한국정보과학회 논문지, 제21권, 제2호, pp.298-306, 1994
  13. 조경달, 조상엽, '퍼지페트리네트를 이용한 구간값 퍼지집합추론', 한국정보과학회 논문지: 소프트웨어 및 응용, 제 31권, 제5호, pp.625-631, 2004
  14. Giordana, A., and Saitta, L., 'Modeling Production Rules by Means of Predicate Transition Network,' Information Sciences, Vol. 35, No. 1, pp.1-41, 1985 https://doi.org/10.1016/0020-0255(85)90039-8
  15. Murata, T., and Zhang D., 'A Predicate-Transition Net Model for Parallel Interpretation of Logic Program,' IEEE Trans. on SE, Vol. 14, No. 4, pp.481-497, 1988 https://doi.org/10.1109/32.4671
  16. Lin, C., et al., 'Logical Inference of Horn Clauses in Petri Net Models,' Knowledge and Data Engineering, Vol. 5, pp.416-425, 1993 https://doi.org/10.1109/69.224194
  17. Peterka, G., and Murata, M., 'Proof Procedure and Answer Extraction in Petri Net Model of Logic Programs,' IEEE Trans. on SE, Vol. 15, pp.209-217, 1989 https://doi.org/10.1109/32.21746
  18. Arnould, T., and Tano, S., 'Interval-valued Fuzzy Backward Reasoning,' IEEE Trans. Fuzzy Systems, Vol. 3, pp.425-437, 1995 https://doi.org/10.1109/91.481951
  19. Lodwick, W. A., and Jamison, K. D., 'Special Issue: Interface Between Fuzzy Set Theory and Interval Analysis,' Fuzzy Sets and Systems, Vol. 135, pp.1-3, 2003 https://doi.org/10.1016/S0165-0114(02)00245-2
  20. Moore, R., and Lodwick, W. A., 'Interval Analysis and Fuzzy set theory,' Fuzzy Sets and Systems, Vol. 135, pp.5-9, 2003 https://doi.org/10.1016/S0165-0114(02)00246-4