• Title/Summary/Keyword: vague set reasoning

Search Result 2, Processing Time 0.015 seconds

Vague Set Reasoning using Extended Fuzzy Pr/T Nets (확장된 퍼지 Pr/T네트에서 모호집합 추론)

  • Cho, Sang-Yeop
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.9
    • /
    • pp.927-935
    • /
    • 2005
  • The certainty factors of the fuzzy production rules and the certainty factors of fuzzy propositions appearing in the rules are represented by real values between zero and one. If it can allow the certainty factors of the fuzzy production rules and the certainty factors of fuzzy propositions can be represented by intervals, such as vague numbers between zero and one based on vague sets, then it can allow the reasoning of rule-based systems to perform fuzzy reasoning in more flexible manner[18]. we are also proposed an efficient algorithm to perform vague set reasoning automatically. This vague set reasoning algorithm allows the rule-based systems to perform reasoning in a more flexible and more efficient.

Fuzzy reasoning for assessing bulk tank milk quality (Bulk tank milk의 품질평가를 위한 퍼지기반 추론)

  • Kim Taioun;Jung Daeyou;Jayarao Bhushan M.
    • Journal of Intelligence and Information Systems
    • /
    • v.10 no.3
    • /
    • pp.39-57
    • /
    • 2004
  • Many dairy producers periodically receive information about their bulk tank milk with reference to bulk tank somatic cell counts, standard plate counts, and preliminary incubation counts. This information, when collected over a period of time, in combination with bulk tank mastitis culture reports can become a significant knowledge base. Several guidelines have been proposed to interpret farm bulk tank milk bacterial counts. However many of the suggested interpretive criteria lack validation, and provide little insight to the interrelationship between different groups of bacteria found in bulk tank milk. Also the linguistic terms describing bulk tank milk quality or herd management status are rather vague or fuzzy such as excellent, good or unsatisfactory. The objective of this paper was to develop a set of fuzzy descriptors to evaluate bulk tank milk quality and herd's milking practice based on bulk tank milk microbiology test results. Thus, fuzzy logic based reasoning methodologies were developed based on fuzzy inference engine. Input parameters were bulk tank somatic cell counts, standard plate counts, preliminary incubation counts, laboratory pasteurization counts, non agalactiae-Streptococci and Streptococci like organisms, and Staphylococcus aureus. Based on the input data, bulk tank milk quality was classified as excellent, good, milk cooling problem, cleaning problem, environmental mastitis, or mixed with mastitis and cleaning problems. The results from fuzzy reasoning would provide a reference regarding a good management practice for milk producers, dairy health consultants, and veterinarians.

  • PDF