Tracking analog-to-digital 변환기를 이용한 digital phase-locked loop

Digitally controlled phase-locked loop with tracking analog-to-digital converter

  • 차수호 (한양대학교 전자통신컴퓨터공학부) ;
  • 유창식 (한양대학교 전자통신컴퓨터공학부)
  • Cha, Soo-Ho (Department of Electronics and Computer Engineering, Hanyang University) ;
  • Yoo, Chang-Sik (Department of Electronics and Computer Engineering, Hanyang University)
  • 발행 : 2005.09.01

초록

본 논문에서는 1.6Gb/s에서 동작하는 digitally controlled phase-locked loop (DCPLL)를 제안한다. DCPLL은 일반적인 아날로그 PLL과 tracking analog-to-digital 변환기를 결합한 구조이다. 제안한 DCPLL에서는 tracking ADC의 출력이 voltage controlled oscillator (VCO)의 제어 전압을 생성한다. 일반적으로 사용되는 digital PLL (DPLL)은 digitally controlled oscillator (DCO)와 time-to-digit converter (TDC)로 구성된다 DCO와 TDC를 사용한 DPLL은 시간 스텝이 작을 수 록 jitter 특성이 향상되지만 전력소모는 커진다. 이 논문에서 제안한 DCPLL은 DPLL의 핵심요소인 DCO와 TDC를 사용하지 않았기 때문에 jitter, 면적, 전력소모 측면에서 유리하다. DCPLL은 $0.18\mu$m 4-metal CMOS공정을 이용하여 제작하였고 면적은 1mm $\times$0.35mm를 차지한다. 1.8V 단일 전원전압으로 정상동작에서는 59mW, power-down 모드에서는 $984\mu$W 전력을 소모하고 16.8ps rms jitter를 갖는다.

A digitally controlled phase-locked loop (DCPLL) is described. The DCPLL has basically the same structure as a conventional analog PLL except for a tracking analog-to-digital converter (ADC). The tracking ADC generates the control signal for voltage controlled oscillator. Since the DCPLL employs neither digitally controlled oscillator nor time-to-digital converter-the key building blocks of digital PLL (DPLL), there is no need for the 03de-off between jitter, power consumption and silicon area. The DCPLL was implemented in a $0.18\mu$m CMOS process and the active area is 1mm $\times$0.35 mm The DCPLL consumes S9mW during the normal opuation and $984\{mu}W$ during the power-down mode from a 1.8V supply. The DCPLL shows 16.8ps ms jitter.

키워드

참고문헌

  1. T. Olsson et al., 'A digitally controlled PLL for digital SOCs,' IEEE J. Solid-State Circuits, Vol. 39, No. 5, pp. 751-760, May. 2004 https://doi.org/10.1109/JSSC.2004.826333
  2. F. Gardner, 'Charge-Pump Phase-Lock Loops,' IEEE Trans. Communications, Vol. COM-28, pp. 1849-1858, Nov. 1980 https://doi.org/10.1109/TCOM.1980.1094619
  3. J. Maneatis, 'Low-Jitter Process-Independent DLL and PLL Based on Self-Biased Techniques,' IEEE J. Solid-State Circuits, Vol. 31, no. 11, pp. 1723-1732, Nov. 1996 https://doi.org/10.1109/JSSC.1996.542317
  4. C. Lin et al., 'A 10 bit, 500Msample/s CMOS DAC in $0.6mm^2$,' IEEE J. Solid-State Circuits, Vol. 33, No. 12, pp. 1948-1958, Dec. 1998 https://doi.org/10.1109/4.735535
  5. J. Linet et al., 'A PVT Tolerant 0.18MHz to 600MHz Self-Calibrated Digital PLL in 90nm CMOS Process,' in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 488-489, Feb. 2004 https://doi.org/10.1109/ISSCC.2004.1332807
  6. B. Razavi et al., 'Design techniques for high-speed, high-resolution comparators,' IEEE J. Solid-State Circuits, Vol. 27, No. 12, pp. 1916-1926, Dec. 1992 https://doi.org/10.1109/4.173122
  7. S. Kim et al., 'A 960-Mb/s/pin interface for skew-tolerant bus using low jitter PLL,' IEEE J. Solid-State Circuits, Vol. 32, No. 5, pp. 691-700, May. 1997 https://doi.org/10.1109/4.568836
  8. A. Fahim et al., 'A Fast Lock Digital Phase-Locked loop Architecture for Wireless Application,' IEEE J. Solid-State Circuits, Vol. 50, No. 2, pp. 347-351, Feb. 2003
  9. C. Chung et al., 'An All-Digital Phase-Locked Loop for High-Speed Clock Generation,' IEEE J. Solid-State Circuits, Vol. 38, No. 2, pp. 347-351, Feb. 2003 https://doi.org/10.1109/JSSC.2002.807398
  10. I. Hwang et al., 'A digitally controlled phase locked loop with fast locking scheme for clock synthesis application,' in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 168-169, Feb. 2000 https://doi.org/10.1109/ISSCC.2000.839734