DOI QR코드

DOI QR Code

Effect of Sonicated Extracts of Enterococcus faecalis on the Production of Matrix Metalloproteinase-8 by Human Polymorphonuclear Neutrophils

ENTEROCOCCUS FAECALIS 추출물이 다형핵 백혈구의 METALLOPROTEINASE-8 분비에 미치는 영향에 관한 연구

  • Park, Sung-Kyung (Department of Conservative Dentistry, College of Dentistry, Seoul National University) ;
  • Shon, Won-Jun (Department of Conservative Dentistry, College of Dentistry, Seoul National University) ;
  • Lim, Sung-Sam (Department of Conservative Dentistry, College of Dentistry, Seoul National University)
  • 박성경 (서울대학교 치과대학 치과보존학교실) ;
  • 손원준 (서울대학교 치과대학 치과보존학교실) ;
  • 임성삼 (서울대학교 치과대학 치과보존학교실)
  • Published : 2005.03.01

Abstract

This in vitro study monitored MMP-8 production on PMN by stimulated with the following three groups; Sonicated extracts of E. faecalis (SEF), SEF treated with $Ca(OH)_2$ (12.5mg/ml) for 7 days, and lipopolysac-charides(LPS) of E. coli. The level of MMP-8 in each group was immediately measured by ELISA. The data were analyzed with Kruskal-Wallis test and Mann-Whitney U test. In the SEF group, the level of production of MMP-8 was higher than the negative control group in low concentration ($0.05{\mu}g/ml$) of SEF (p < 0.05). but it decreased with an increase in the concentration of SEF (p < 0.05). In the case of SEF treated with $Ca(OH)_2$, all of the MMP levels were higher than negative control group (p < 0.05), but no statistical difference was found among the different SEF concentrations (p > 0.05). All of the levels in E. coli LPS were incresed with increasing concentrations (p < 0.05). According to this study we could summarized as follows: 1. MMP-8 was expressed at low level in untreated PMN group the levels of MMP-8 were upregulated in PMN stimulated by E. coli LPS groups. 2. In the SEF groups, the level of production of MMP-8 decreased with an increase in concentration of SEF (p < 0.05). So E. faecalis may have suppressive effect on the production of MMP-8 by PMN. 3. In the case of SEF treated with $Ca(OH)_2$, all of the MMP levels at different SEF concentrations were higher than untreated PMN group (p < 0.05), but no statistical difference was found among the different SEF concentrations (p > 0.05).

Enterococcus faecalis의 추출물을 성인의 말초혈액으로부터 얻은 인간의 백혈구를 이용해 Matrix Metalloproteinase-8 (MMP-8)의 생산에 미치는 영향에 대해서 알아보았다. Enterococcus faecalis를 배양한 뒤 초음파 분쇄를 하여 추출물을 얻어냈다. 이중 일부는 적정한 농도의 Ca(OH)_2$를 처리하였다. 이후 E. faecalis 추출물군, E. faecalis 추출물에 $Ca(OH)_2$ 를 처리한 군으로 분리하여 다형핵백혈구를 자극하여 MMP-8의 생산량을 측정하였다. MMP-8는 처리하지 않은 PMN group에서도 나타났고, PMN을 E. coli LPS로 자극시킨 경우 증가하였다 (p < 0.05) SEF group 들에서는 MMP-8의 생성량이 SEF 의 농도가 증가함에 따라 감소하였다 (p < 0.05). 따라서 Enterococcus faecalis는 PMN의 MMP-8 생산 억제 효과를 가진다고 볼 수 있다. $Ca(OH)_2$로 처리한 SEF 군의 경우 각기 다른 SEF 농도에서도 모두 MMP-8 생성량이 아무 처리도 하지 않은 PMN 군보다 많았다 (p < 0.05) . 하지만 각 군들 사이에 통계적 차이는 없었다 (p > 0.05).

Keywords

References

  1. Kakehashi S, Stanley HR, Fitzgerald RJ. The effects of surgical exposures of dental pulps in germ-free and conventional laboratory rat. Oral Burg Oral Med Oral Pathol 20:340-4, 1965 https://doi.org/10.1016/0030-4220(65)90166-0
  2. Sundqvist G, Figdor D, Persson S, Sjogren U. Microbiologic analysis of the teeth with failed endodontic treatment and outcome of conservative retreatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endo 85:86-93, 1998 https://doi.org/10.1016/S1079-2104(98)90404-8
  3. Bystrom A, Claesson R, Sundquvist G. The antibacterial effect of camphorated paramonochlorophenol. camphorated phenol and calcium hydroxide in the treatment of infected root canals. Endod Dent Traumatol 1:170-5, 1985 https://doi.org/10.1111/j.1600-9657.1985.tb00652.x
  4. Sjogren U, Figdor D, Spangberg L, Sundqvist G. The antimicrobial effect of calcium hydroxide as a shortterm intracanal dressing. Int Endod J 24:119-25, 1991 https://doi.org/10.1111/j.1365-2591.1991.tb00117.x
  5. Molander A, Reit C, Dahlen G, Kvist T. Microbiological status of root-filled teeth with apical periodontitis. Int Endod J 31:1-7, 1998 https://doi.org/10.1046/j.1365-2591.1998.t01-1-00111.x
  6. Love RM, Enterococcus faecalis-a mechanism for its role in endodontic failure. Int Endod J 34:399-405, 2001 https://doi.org/10.1046/j.1365-2591.2001.00437.x
  7. Evans M, Davies JK, Sundqvist G, Figdor D. Mechanisms involved in the resistance of Enterococcus faecalis to cillcium hydroxide. Int Endod J 35:221-8, 2002 https://doi.org/10.1046/j.1365-2591.2002.00504.x
  8. Birkedal-Hansen H. Proteolytic remodellation of extracellular matrix. Current Opinion in Cell Biology 7:728-35, 1995 https://doi.org/10.1016/0955-0674(95)80116-2
  9. Shin SJ, Lee JI, Baek SH, Lim SS. Tissue levels of matrix metalloproteinases in pulps and periapical lesions. J Endod 28:313-5, 2002 https://doi.org/10.1097/00004770-200204000-00013
  10. Mainardi CL, Pourmotabbed TF, Hasty KA. Inflammatory phagocytes and connective tissue degrading metalloproteinases. Am J Med Sci 302:171-5, 1991 https://doi.org/10.1097/00000441-199109000-00010
  11. Hanemaaijer R, Sorsa T, Konttinen YT, Ding Y, Sutinen M, Visser H, van Hinsbergh VW, Helaakoski T, Kainulainen T, Ronka H, Tschesche H, Salo T. Matrix metalloproteinase-8 is expressed in rheumatoid synovial fibroblasts and endothelial cells. Regulation by tumor necrosis factor-alpha and doxycycline. J Biol Chem Dec 272:31504-9, 1997 https://doi.org/10.1074/jbc.272.50.31504
  12. Palosaari H, Wahlgren J, Larmas M, Ronka H, Sorsa T, Salo T, Tjaderhane L. The expression of MMP-8 in human odontoblasts and dental pulp cells is down-regulated by TGF-betal. J Dent Res 79:77-84, 2000 https://doi.org/10.1177/00220345000790011401
  13. Wahlgren J, Salo T, Teronen O, Luoto H, Sorsa T, Tjaderhane L. Matrix metalloproteinase-8 (MMP-8) in pulpal and periapical inflammation and periapical rootcanal exudates. Int Endod J 35:897-904, 2002 https://doi.org/10.1046/j.1365-2591.2002.00587.x
  14. Yoshida H, Jontell M, Sundqvist G, Bergenholtz G. Effect of sonicated material from Fusobacterium nucleatum on the functional capacity of accessory cells derived from dental pulp. Oral Microbiol Immunol 10:208-12, 1995 https://doi.org/10.1111/j.1399-302X.1995.tb00144.x
  15. Kurita-Ochiai T, Ochiai K, Ikeda T. Immunosuppressive effect induced by Actinobacillus actinomycetemcomitans: effect on immunoglobulin production and lymphokine synthesis. Oral Microbiol Immunol 7(6):338-43, 1992 https://doi.org/10.1111/j.1399-302X.1992.tb00633.x
  16. Son HH, Lim S, Shon W, Kim HS, Lee W. Effects of sonicated Enterococcus faecalis extracts on Interleukin-2 and Interleukin-4. J Endod 30(10):701-3, 2004 https://doi.org/10.1097/01.DON.0000129960.58129.AF
  17. Peciuliene V, Reynaud AH, Balciuniene I, Haapasalo M. Isolation of yeasts and enteric bacteria in root-filled teeth with chronic apical periodontitis. Int Endod J 34:429-34, 2001 https://doi.org/10.1046/j.1365-2591.2001.00411.x
  18. Fabricius L, Dahlen G, Holm SE, Moller AJ. Influence of combinations of oral bacteria on periapical tissues of monkeys. Scand J Dent Res 90:200-6, 1982
  19. Hartke A, Giard JC, Laplace JM, Auffray Y. Survival of Enterococcus faecalis in an oligotrophic microcosm: changes in morphology, development of general stress resistance, and analysis of protein synthesis. Appl Environ Microbiol 64:4238-45, 1998
  20. Orstavik D, Haapasalo M. Disinfection by endodontic irrigants and dressings of experimentally infected dentinal tubules. Endod Dent Traumatol 6:142-9, 1990 https://doi.org/10.1111/j.1600-9657.1990.tb00409.x
  21. Heithersay GS. Calcium hydroxide in the treatment of pulpless teeth with associated pathology. J Br Endod Soc 8:74-93, 1975 https://doi.org/10.1111/j.1365-2591.1975.tb01000.x
  22. Siqueira Junior JF, Lopes HP. Mechanisms of antimicrobial activity of calcium hydroxide: a critical review. Int Endod J 32:361-9, 1999 https://doi.org/10.1046/j.1365-2591.1999.00275.x
  23. Wang JD, Hume WR. Diffusion of hydrogen ion and hydroxyl ion from various sources through dentine. Int Endod J 21:17-26, 1988 https://doi.org/10.1111/j.1365-2591.1988.tb00949.x
  24. Nerwich A, Figdor D, Messer HH. pH changes in root dentin over a 4-week period following root canal dressing with calcium hydroxide. J Endod 19:302-6, 1993 https://doi.org/10.1016/S0099-2399(06)80461-9
  25. Haapasalo HK, Siren EK, Waltimo TM, Orstavik D, Haapasalo MP. Inactivation of local root canal medicaments by dentine: an in vitro study. Int Endod J 33:126-31, 2000 https://doi.org/10.1046/j.1365-2591.2000.00291.x
  26. Haapasalo M, Orstavik D, In vitro infection and disinfection of dentinal tubules. J Dent Res 66:1375-9, 1987 https://doi.org/10.1177/00220345870660081801
  27. Safavi KE, Spangberg LS, Langeland K. Root canal dentinal tubule disinfection. J Endod 16:207-10, 1990 https://doi.org/10.1016/S0099-2399(06)81670-5
  28. Vahdaty A, Pitt Ford TR, Wilson RF. Efficacy of chlorhexidine in disinfecting dentinal tubules in vitro. Endod Dent Traumatol 9:243-8, 1993 https://doi.org/10.1111/j.1600-9657.1993.tb00280.x
  29. Delany GM, Patterson SS, Miller CH, Newton CW. The effect of chlorhexidine gluconate irrigation on the root canal flora of freshly extracted necrotic teeth. Oral Surg Oral Med Oral Pathol 53:518-23, 1982 https://doi.org/10.1016/0030-4220(82)90469-8
  30. Ohara P, Torabinejad M, Kettering JD. Antibacterial effects of various endodontic irrigants on selected anaerobic bacteria. Endod Dent Traumatol 9:95-100, 1993 https://doi.org/10.1111/j.1600-9657.1993.tb00258.x
  31. Jeansonne MJ. White RRA comparison of 2.0% chlorhexidine gluconate and 5.25% sodium hypochlorite as antimicrobial endodontic irrigants. J Endod 20:276-8, 1994 https://doi.org/10.1016/S0099-2399(06)80815-0
  32. Siqueira Junior JF, Batista MM, Fraga RC, de Uzeda M. Antibacterial effects of endodontic irrigants on black-pigmented gram-negative anaerobes and facultative bacteria. J Endod 24:414-6, 1998 https://doi.org/10.1016/S0099-2399(98)80023-X

Cited by

  1. Anti-inflammatory effects of PPARγ on human dental pulp cells vol.31, pp.3, 2006, https://doi.org/10.5395/JKACD.2006.31.3.203