DOI QR코드

DOI QR Code

Load Relaxation and Creep Transition Behavior of a Spray Casted Hypereutectic Al-Si Alloy

분무 주조 과공정 Al-Si 계 합금의 응력이완 및 Creep 천이 거동

  • 김민수 (포항공과대학교 신소재공학과) ;
  • 방원규 (포항산업과학연구원 부품 신소재연구센터 마그네슘 프로젝트팀) ;
  • 박우진 (포항산업과학연구원 부품 신소재연구센터 마그네슘 프로젝트팀) ;
  • 장영원 (포항공과대학교 신소재공학과)
  • Published : 2005.09.01

Abstract

Hypereutectic Al-Si alloys have been regarded attractive for automotive and aerospace application, due to high specific strength, good wear resistance, high thermal stability, low thermal expansion coefficient and good creep resistance. Spray casting of hypereutectic Al-Si alloy has been reported to provide distinct advantages over ingot metallurgy (IM) or rapid solidification/powder metallurgy (RS/PM) process in terms of microstructure refinement. In this study, hypereutectic Al-25Si-2.0Cu-1.0Mg alloy was prepared by OSPREY spray casting process. The change of strain rate sensitivity and Creep transition were analyzed by using the load relaxation test and constant creep test. High temperature deformation behavior of the hypereutectic Al-Si alloy has been investigated by applying the internal variable theory proposed by Chang et al. Especially, the creep resistance of spray casted hypereutectic Al-Si alloy can be enhanced considerably by the accumulation of prestrain.

Keywords

References

  1. T. K. Ha, W. J. Park, S. Ahn, Y. W. Chang, 2002, Fabrication of Spray-formed Hypereutectic Al-25Si Alloy and its Deformation Behavior, J. Mat. Proc. Tech. 103-131, p. 691
  2. V. C. Srivastava, R. K. Mandal, S. N. Ojha, 2001, Microstructure and Mechanical Properties of Al-Si Alloys Produced by Spray Forming Process, Mat. Sci. Eng. A 304, pp. 555-558 https://doi.org/10.1016/S0921-5093(00)01514-8
  3. W.J. Kim, J.H. Yeon, J.C.Lee, 2000, Superplastic Deformation Behavior of Spray-deposited Hypereutectic Al-25Si Alloy, Journal Of Alloys and Compounds 308, pp. 237-243 https://doi.org/10.1016/S0925-8388(00)00810-0
  4. T. S. Kim, K. H. Kim, W. T. Kim, C. W. Won, S. s. Cho, B. S. Chun, 1998, Microstructure and Mechanical Properties of Rapidly Solidified Al-20Si-xFe-3Cu-1Mg (x=0 and5wt%) Extrudates, METALS AND MATERIALS, Vol.4 No.6, pp. 1163-1169 https://doi.org/10.1007/BF03025990
  5. Y. W. Chang and E. C. Aifantis, 1987, Constitutive Laws for Engineering Materials, C.S. Desai(Ed.), Elservior Science Publishing Co., 293
  6. T. K. Ha, Y. W. Chang, 1998, An Internal Variable Theory of Structural Superplasticity, Acta Mater, 46, p. 2741 https://doi.org/10.1016/S1359-6454(97)00473-4
  7. 하태권, 1996, 내부 변형 변수를 이용한 PbSn 공정 합금의 초소성 변형 특성, 포항공대 박사학위논문
  8. F. Carreno, O. A.Ruano, 1997, Separated Contribution of Particles and Matrix on the Creep Behaviors of Dispersion Strengthened Materials, Acta Mater Vol.46, pp. 159-167 https://doi.org/10.1016/S1359-6454(97)00217-6
  9. S. Spigarelli, M. Cabibo, E. Evangelista, S. Cucchieri, 2002, Evaluation of the Creep Properties of an Al-17Si-1Mg-0.7Cu alloy, Materials Letters 56, pp. 1059-1063 https://doi.org/10.1016/S0167-577X(02)00677-8
  10. Yan Ma, Terence G. Langdon, 1997, Creep Behavior of an Al-6061 Metal Matrix Composite Produced by Liquid Metallurgy Processing, Mat. Sci. Eng. A230, pp. 183-187 https://doi.org/10.1016/S0921-5093(97)00030-0
  11. A. Madgwick, C. Ungpinitpong, T. Mori, P. J. Withers, 2003, Observation and Quantitative Analysis of Damage Caused by Creep in an Al $A359/SiC_p$ Composite, Mat. Sci. Eng. A 342, pp. 201-206
  12. R. Pandorf, C. Broeckmann, 1998, Damage Mechanisms in the Particle Reinforced Aluminum Alloy 6061 under Creep Loading, METALS AND MATERIALS, Vol, No.4, pp. 605-609
  13. D. J. Lahaie, J.D.Embury, F.W.Zok, 2004, Damage Accumulation and Mechanical Properties of Particle-Reinforced Metal-Matrix Composites during Hydrostatic Extrusion, Composites Science and Technology 64, pp. 1539-1549 https://doi.org/10.1016/j.compscitech.2003.11.006