Isolation of Bacillus sp. Producing Poly-$\gamma$-glutamic Acid with High Efficiency and Its Characterization

고효율 Poly-$\gamma$-Glutamic Acid생산 균주의 분리 및 생산 특성

  • You Kyung-Ok (Department of Life Science and Biotechnology, Dong-Eui University) ;
  • Oh You-Na (Department of Life Science and Biotechnology, Dong-Eui University) ;
  • Kim Byung-Woo (Department of Life Science and Biotechnology, Dong-Eui University) ;
  • Nam Soo-Wan (Department of Biotechnology and Bioengineering, Dong-Eui University) ;
  • Jeon Sung-Jong (Department of Biotechnology and Bioengineering, Dong-Eui University) ;
  • Kim Dong-Eun (Department of Biotechnology and Bioengineering, Dong-Eui University) ;
  • Kim Young-Man (Department of Food and Nutrition/Oriental Biotech. Co., Dong-Eui University) ;
  • Kwon Hyun-Ju (Department of Life Science and Biotechnology, Dong-Eui University)
  • 유경옥 (동의대학교 생명응용과학과) ;
  • 오유나 (동의대학교 생명응용과학과) ;
  • 김병우 (동의대학교 생명응용과학과) ;
  • 남수완 (동의대학교 생명공학과) ;
  • 전숭종 (동의대학교 생명공학과) ;
  • 김동은 (동의대학교 생명공학과) ;
  • 김영만 (동의대학교 식품영양학과 및 ㈜오리엔탈바이오텍) ;
  • 권현주 (동의대학교 생명응용과학과)
  • Published : 2005.09.01

Abstract

A bacterium with high productivity of poly-$\gamma$-glutamic acid (PGA) was isolated from the traditional Korean seasoning, ChungKookJang. The 16s ribosomal RNA sequence of isolated strain showed 97.6, 98.9 and $90.3{\%}$ of similarity to those of Bacillus sp. WL-3, Bacillus subtilis; ENV1 and B amy-loliquefaciens (T), respectively. Accordingly, this bacterium was identified as a Bacillus sp. However, some biochemical characteristics of this strain were different from those of B. subtilis: D-xylose fermentation and glycogen utility were negative. Maximum production of PGA was achieved when it was grown aerobically in a culture medium containing glutamic acid ($3{\%}$) and fructose ($4{\%}$) as carbon sources. The volumetric yield of PGA reached up to 27 g/l in the optimum culture medium. These results suggest that the present strain can be applicable for industrial purposes such as a prototype strain for food or cosmetics industry.

한국 청국장에서 poly-$\gamma$-glutamic acid (PGA)를 대량 생산하는 세균을 분리하였다. 이 세균의 16s ribosomal RNA 서열을 분석한 결과 Bacillus subtilis BFAS, B. subtilis MO4와 B. amyloliquefaciens B128과 99.0, 97.7 그리고 $97.3{\%}$의 상동성을 각각 나타내었다. 따라서 본 분리 균주를 Bacillus sp.로 동정하고 Bacillus sp. YN-1로 명명하였다. PGA 대량생산 을 위해 생산 조건을 검토한 결과 $3{\%}$ glutamic acid, $4{\%}$ fructose를 탄소원으로 첨가하였을 때 최대량의 PGA를 생산하는 것을 알 수 있었다. 또한 PGA 최대 생산량은 최적 배양 조건에서 27 g/l의 양으로 생산되어 본 균주는 PGA 대량 생산에 적합한 세균임을 확인할 수 있었으며 식품 및 화장품 산업에 유용하게 사용할 수 있을 것으로 사료된다.

Keywords

References

  1. Abe, K., Y. Ito, T. Ohmachi, and Y. Asada. 1997. Purification and properties of two isozymes of gamma-glutamyltranspeptidase from Bacillus subtilis TAM-4. Biosci. Biotechnol. Biochem. 61: 1621-1625 https://doi.org/10.1271/bbb.61.1621
  2. Ash, C., J. A. E. Farrow, S. Wallbanks, and M. D. Collins. 1991. Phylogenetic heterogeneity of the genus bacillus revealed by comparative analysis of small subunit ribosomal RNA sequences. Lett. Appl. Microbiol. 13: 202-206 https://doi.org/10.1111/j.1472-765X.1991.tb00608.x
  3. Ashiuchi, M., K, Tani, K, Soda, and H, Misono. 1998. Properties of glutamate racemase from Bacillus subtilis IFO 3336 producing poly-gamma-glutamate. J. Biochem. 123: 1156-1163 https://doi.org/10.1093/oxfordjournals.jbchem.a022055
  4. Ashiuchi, M., C. Nawa, T. Kamei, J. J. Song, S. P. Hong, M. H. Sung, K. Soda, T. Yagi, and H. Misono. 2001. Physiological and biochemical characteristics of poly gamma-glutamate synthetase complex of Bacillus subtilis. Eur. J. Biochem. 268: 5321-5328 https://doi.org/10.1046/j.0014-2956.2001.02475.x
  5. Ashiuchi, M., T. Kamei, D.-H. Baek, S.-Y. Shin, M.-H. Sung, K. Soda, T. Yagi, and H. Misono. 2001. Isolation of Bacillus subtilis (chungkookjang), a poly-${\gamma}$-glutamate producer with high genetic competence. Appl. Microbiol Biotechnol. 57: 764-769 https://doi.org/10.1007/s00253-001-0848-9
  6. Bovarnick, M. 1942. The formation of extracellular D(-) glutamic acid polypeptide by Bacillus subtilis. J. Biol. Chem. 145: 415-424
  7. Cheng, C., Y. Asada, and T. Asida. 1989. Production of ${\gamma}$-polyglutamic acid by Bacillus subtilis A35 under denitrifying conditions. Agric. Biol. Chem. 53: 2369-2375 https://doi.org/10.1271/bbb1961.53.2369
  8. Choi, H. J. and M. Kunioka. 1995. Preparation conditions and swelling equilibria of hydrogel prepared by (${\gamma}$-irradiation from microbiol poly((${\gamma}$-glutamic acid). Radiat. Phys. Chem. 46: 175-179 https://doi.org/10.1016/0969-806X(95)00009-M
  9. Gota, A. and M. Kunioka. 1992. Biosynthesis and hydrolysis of poly(${\gamma}$-glutamic acid) from Bacillus subtilis IFO3335. Biosci. Biotechnol. Biochem. 56: 1031-1035 https://doi.org/10.1271/bbb.56.1031
  10. Hara, T., Y, Fujio, and S. Ueda. 1982. Polyglutamate production by Bacillus subtilis (natto). J. Appl. Biochem. 4: 112-120
  11. Holzer, H. 1969. Regulation of enzymes by enzymecatalyzed chemical modification. Adv. Enzymol. 32: 297-326
  12. Ito, Y., T. Tanaka, T. Ohmachi, and Y. Asada. 1996. Glutamic acid independent production of poly (${\gamma}$-glutamic acid) by Bacillus subtilis TAM-4. Biosci. Biotechnol. Biochem. 60: 1239-1242 https://doi.org/10.1271/bbb.60.1239
  13. Kubota, H., T. Matsunobu, K. Uotani, H. Takabe, A. Satoh. T. Tanaka, and M. Taniguchi. 1993. Production of poly(${\gamma}$-glutamic acid) by Bacillus subtilis F-2-01. Biosci, Biotechnol. Biochem. 57: 1212-1213 https://doi.org/10.1271/bbb.57.1212
  14. Kunioka, M. 1997. Biosynthesis and chemical reactions of poly(amino acid)s from microorganisms. Appl. Microbiol. Biotechnol. 47: 467-475
  15. Ludwig, W., G Kirchof, N. Klugbauer, M. Weizenegger, D. Betzl, M. Ehrmann, C. Hertel, S. Jilg, R. Tatzel, H. Zitzelsberger, S. Liebl, M. Hochberger, J. Shah, D. Lane, and P. R. Wallnoef. 1992. Complete 23S ribosomal RNA sequences of Gram-positive Bacteria with a low DNA G+C content. Syst. Appl. Microbiol. 15: 487-501 https://doi.org/10.1016/S0723-2020(11)80107-4
  16. Mamane-Gravetz, H. and K. G. Linden. 2005. Relationship between physiochemical properties, aggregation and u.v. inactivation of isolated indigenous spores in water. J. Appl. Microbiol. 98: 351-363 https://doi.org/10.1111/j.1365-2672.2004.02455.x
  17. Oh, Y. P., J. M. Lee, K. H. Cho, and K. H. Yoon. 2002. Isolation and enzyme production of a mannanase-producing strain, Bacillus sp. WL-3. Kor. J. Microbiol. Biotechnol. 30: 247-252
  18. Stadtman, E. R. 1966. Allosteric regulation of enzyme activity. Adv. Enzymol. 28: 41-154
  19. Shih, I. L. and Y. T. Van. 2001. The production of poly-(${\gamma}$-glutamic acid) from microorganisms and its various applications. Bioresour. Technol 79: 207-225 https://doi.org/10.1016/S0960-8524(01)00074-8
  20. Thome, C. B. and D. M. Molnar. 1955. D-Amino acid transamination in Bacillus anthracis. J. Bacteriol. 70: 420-426
  21. Thome, C. B, C. G Gomez, H. E. Noyes, and R. D. Housewright. 1954. Production of glutamyl polypeptide by Bacillus subtilis. J. Bacteriol. 68: 307-315 https://doi.org/10.1002/path.1700680145
  22. Yahata, K., J. Sadanobu, and T. Endo, 1992. Preparation of poly-${\alpha}-benzyl-{\gamma}$-glutamate fiber. Polym. Prepr. Jpn. 41: 1077