Characterization and Xylanse Productivity of Streptomyces sp. WL-2

Xylanase 생산균 Streptomyces sp. WL-2의 특성과 효소 생산성

  • 이은희 (우송대학교 의료영양식품과학부) ;
  • 김창진 (한국생명공학연구원) ;
  • 윤기홍 (우송대학교 의료영양식품과학부)
  • Published : 2005.09.01

Abstract

A strain WL-2 was isolated from soil as a producer of the extracellular xylanase, which catalyzes the hydrolysis of oat spelt xylan. The strain WL-2 was identified as Streptomyces sp. on the basis of its 16S rRNA sequence, morphology, cultural and physiological properties. The xylanase of culture filtrate was the most active at $60^{\circ}C$ and pH 6.0, and retained $90{\%}$ of its maximum activity at range of pH $4.5{\~}6.5$. In order to optimize the culture medium for xylanase production, ingredients of G.S.S medium were replaced by several carbohydrates. The carbohydrates such as ${\alpha}-cellulose$, oat spelt xylan and maltose increased dramatically the xylanase productivity of Streptomyces sp. WL-2. The maximum xylanase productivity was reached to 120 U/ml in the modified medium containing $1{\%}\;\alpha-cellulose$ and $1\%}$ maltose.

토양으로부터 세포외로 xylanase를 분비 생산하는 방선균 WL-2가 분리되었으며, 분리균의 16S rRNA 염기서열과 형태${\cdot}$배양${\cdot}$생리적 특성을 조사한 결과 Streptomyces속 균주로 확인되었다. 분리균의 배양상등액에 존재하는 xylanase는 pH 6.0과 $60^{\circ}C$의 반응조건에서 반응성이 가장 높았으며, pH $4.5{\~}6.5$ 범위에서 최대활성의 $90{\%}$ 이상을 나타냈다. Xylanase의 생산을 위한 배지를 최적화하기 위해서 G.S.S 배지성분을 여러 종류의 탄수화물로 대체하였다. ${\alpha}-Cellulose$, oat spelt xylan과 엿당과 같은 탄수화물은 Streptomyces sp. WL-2의 xylanase 생산성을 급격히 증가시키는 것으로 확인되었다. ${\alpha}-Cellulose(1\%)$와 엿당($1{\%}$)을 함유한 변형배지에서 xylanase의 최대생산성이 120 U/ml로 확인되었다.

Keywords

References

  1. Antonopoulos, V. T., M. Hernandez, M. E. Arias, E. Mavrakos, and A. S. Ball. 2001. The use of extracellular enzymes from Streptomyces albus ATCC 3005 for the bleaching of eucalyptus kraft pulp. Appl. Microbiol, Biotechnol. 57: 92-97 https://doi.org/10.1007/s002530100740
  2. Bachmann, S. L. and A. J. McCarthy. 1991. Purification and cooperative activity of enzymes constituting the xylan-degrading system of Thermomonospora fusca. Appl. Environ. Microbiol. 57: 2121-2130
  3. Beg, Q. K., B. Bhushan, M. Kapoor, and G. S. Hoondal. 2000. Enhanced production of a thermostable xylanase from Streptomyces sp. QG-11-3 and its application in biobleaching of eucalyptus kraft pulp. Enzyme Microb. Technol. 27: 459-466 https://doi.org/10.1016/S0141-0229(00)00231-3
  4. Biely, P. 1985. Microbial xylanolytic systems. Trends Biotechnol. 3: 286-290 https://doi.org/10.1016/0167-7799(85)90004-6
  5. de Lemos Esteves, F., V. Ruelle, J. Lamotte-Brasseur, B. Quinting, and J. -M. Frere. 2004. Acidophilic adaptation of family 11 endo-beta-1,4-xylanases: modeling and mutational analysis. Protein Sci. 13: 1209-1218 https://doi.org/10.1110/ps.03556104
  6. Goodfellow, M., T. Cross, and H. A. Lechevalier. 1989. Suprageneric classification of Actinomyces, pp 2333-2450. In S.T. Williams, M.E. Sharpe, and J.G. Holt (eds.), Bergey's Mannual of Systematic Bacteriology, vol 4, Williams and Wilkins, Baltimore
  7. Kansoh, A. L., A. M-Ali, and A. A-El-Gammal. 2001. Xylanolytic activities of Streptomyces sp. 1--taxonomy, production, partial purification and utilization of agricultural wastes. Acta Microbiol. lmmunol. Hung. 48: 39-52 https://doi.org/10.1556/AMicr.48.2001.1.5
  8. Kansoh, A. L. and Z. A. Nagieb. 2004. Xylanase and mannanase enzymes from Streptomyces galbus NR and their use in biobleaching of softwood kraft pulp. Antonie van Leeuwenhoek. 85: 103-114 https://doi.org/10.1023/B:ANTO.0000020281.73208.62
  9. Kim, D. J., H. J. Shin, and K. -H. Yoon. 1995. Isolation of a thermophilic Bacillus sp. producing the thermostable cellulase-free xylanase, and properties of the enzyme. Kor. J. Appl. Microbiol. Biotechnol. 28: 304-310
  10. Lee, Y. E., E. Lowe, B. Henrissat, and J. G Zeikus. 1993. characterization of the active site and thermostability regions of endoxylanase from Thermoanaerobacterium saccharolyticum B6A-R1. J. Bacteriol. 10: 563-567
  11. Mansour, F. A., A. A. Shereif, M. M. Nourel-Dein, M. I. Abou-Dobara, and A. S. Ball. 2003. Purification and characterization of xylanase from a thermophilic Streptomyces sp. K37. Acta Microbiol. Pol. 52: 159-172
  12. McCracken, K. J., M. R. Bedford, and R. A. Stewart. 2001. Effects of variety, the 1B/1R translocation and xylanase supplementation on nutritive value of wheat for broilers. Br. Poult. Sci. 42: 638-642 https://doi.org/10.1080/00071660120088452
  13. Miller, G L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  14. Rodriquez, S., R. I. Santamaria, J. M. Fernandez-Abalos, and M. Diaz. 2005. Identification of the sequences involved in the glucose-repressed transcription of the Streptomyces halstedii JM8 xysA promoter. Gene. 351: 1-9 https://doi.org/10.1016/j.gene.2005.03.007
  15. Shirling, E. B. and D. Gottlieb. 1966. Methods for the characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16: 313-340 https://doi.org/10.1099/00207713-16-3-313
  16. Siedenberg, D., S. R. Gerlach, K. Schugerl, M. L. F. Giuseppin, and J. Hunik. 1998. Production of xylanase by Aspergillus awamori on synthetic medium in shake flask cultures. Process Biochem. 33: 429-433 https://doi.org/10.1016/S0032-9592(97)00090-3
  17. Sunna, A. and G Antranikian. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17: 39-67 https://doi.org/10.3109/07388559709146606
  18. Tenkanen, H., J. Plus, and K. Poutanen. 1992. Two major xylanases of Trichoderma reesei. Enzyme Microb. Technol. 14: 566-574 https://doi.org/10.1016/0141-0229(92)90128-B
  19. Williams, S. T., M. Goodfellow, G Alderson, E. M. H. Wellington, P. H. A. Sneath, and M. Sackin. 1983. Numerical classification of Streptomyces and related genera. J. Gen. Microbiol. 129: 1743-1813