Physiological Characterization of BTEX Degrading Bacteria Microbacterium sp. EMB-1 and Rhodococ-cus sp. EMB-2 Isolated from Reed Rhizosphere of Sunchon Bay

순천만 갈대의 근권으로부터 분리한 BTEX 분해세균 Microbacterium sp. EMB-1과 Rhodococcus sp. EMB-2의 생리학적 특성 분석

  • Kang Sung-Mi (Department of Environmental Education, Sunchon National Univeristy) ;
  • Oh Kye-Heon (Department of Life Science, Sonnchunhyang University) ;
  • Kahng Hyung-Yeel (Department of Environmental Education, Sunchon National Univeristy)
  • 강성미 (순천대학교 환경교육과) ;
  • 오계헌 (순천향대학교 생명과학부) ;
  • 강형일 (순천대학교 환경교육과)
  • Published : 2005.09.01

Abstract

This study focuses on investigating roles of microorganisms in decontamination of reed rhizosphere in Sunchon Bay, Korea, which is considered one of the marsh and mud environment severely affected by human activities such as agriculture and fisheries. In general, the bay is known to play the role of the buffering zone to reduce the sudden impact or change by environmental stresses. In our initial efforts to elucidate the microbial functions in decontamination process in reed rhizosphere, pure bacteria capable of degrading aromatic hydrocarbons were isolated from reed (Phragmites communis) rhizosphere of Sunchon bay by enrichment culture using either benzene, toluene, ethylbenzene, or xylene (BTEX) as a sole source of carbon and energy. Measurement of the rates of BTEX degradation and cell growth during the incubation in BTEX media under several temperature conditions demonstrated maximized degradation of BTEX at $37^{\circ}C$ in both strains. Both strains were also resistant to all the heavy metals and antibiotics tested in this study, as well as they grew well at $42^{\circ}C$. Identification of the isolates based on 16S rRNA gene sequences, and a variety of phenotypic and morphologic properties revealed that the two strains capable of BTEX catabolism were among Microbacterium sp., and Rhodococcus sp. with over $95{\%}$ confidence, designated Microbacterium sp. EMB-1 and Rhodococcus sp. EMB-2, respectively This result suggested that in the rhizosphere of reed, one of major salt marsh plants they might play an important roles in decontamination process of reed rhizosphere contaminated with petroleum such as BTEX.

본 연구는 어업이나 농업 등의 인간활동에 의하여 상당한 영향을 받고 있는 순천만 갈대의 근권에서 이루어지는 정화작용에 있어 미생물의 역할을 조사하는 것에 중점을 두었다. 일반적으로 만은 환경 스트레스로 인한 갑작스런 충격을 감소시키는 완충지역으로서의 역할을 하는 것으로 알려져 있다. 갈대근권에서 이루어지는 정화기능에 있어 미생물의 역할을 밝히기 위한 첫 번째 노력의 일환으로 벤젠, 톨루엔, 또는 자일렌이 단일 탄소 및 에너지원으로 첨가된 농화배양법을 사용하여 BTEX를 분해할 수 있는 두 종류의 그람양성 세균을 순수분리하였다. 다양한 온도조건의 BTEX배지에서 이들 세균을 배양하는 동안 BTEX의 분해율 및 성장률을 주기적으로 조사한 결과 $37^{\circ}C$에서 가장 빠른 기질 분해율을 보였고 $42^{\circ}C$의 고온에서도 두 균 모두 잘 성장하는 것으로 나타났다. 본 연구에서 시험한 수은, 카드뮴, 납, 바륨, 철 대부분의 중금속에 강한 내성뿐만 아니라 ampicillin을 비롯한 시험한 5종류의 항생제 모두에 강한 내성을 나타냈다. 16S rRNA 유전자 서열과 다양한 표현형 및 형태학적 특성을 기초로 한 동정의 결과 BTEX를 분해할 수 있는 두 균주는 $95{\%}$상의 신뢰도로 Microbacterium sp.와 Rhodococcus sp.로 나타났고, 각 균주는 Microbacterium sp. EMB-1과 Rhodococcus sp. EMB-2로 명명하였다. 이러한 결과는 주요한 염습지 식물중의 하나인 갈대의 근권에서 살아가는 이들 균주들이 BTEX와 같은 석유로 오염된 근권 환경의 정화작용에 중요한 역할을 할 수 있음을 제시해주었다.

Keywords

References

  1. Ahn, H.-K. 2000. An analysis of Riparian vegetation distribution based on physical soil characteristics and soil moisture content - focused on the relationship between soil characteristics and vegetation -. J. Kor. Ins. Lands. Archi. 28: 39-47
  2. Baik, K.-S., J.-H. Choi, and C.-N. Seong. 2000. Cellulose degradation and extracellular enzymatic activity of the mud flat in Sunchon bay. Kor. J. Microbiol. 36: 130-135
  3. Begg, J. S., R. L. Lavigne, and P. L. Veneman. 2001. Reed beds: constructed wetlands for municipal wastewater treatment plant sludge dewatering. Water Sci. Technol. 44: 393-398
  4. Briglia, M., P. J. M. Middeldorp, and M. S. SalkinojaSalonen. 1994. Mineralization performance of Rhodococcus chlorophenolicus strain PCP-1 in contaminated soil stimulating on site conditions. Soil Biol. Biochem. 26: 377-385 https://doi.org/10.1016/0038-0717(94)90287-9
  5. Collins, L. D. and A. J. Daugulis. 1999. Benzene/toluene/pxylene degradation. Part II. Effect of substrate interactions and feeding strategies in toluene/benzene and toluene/pxylene fermentations in a partitioning bioreactor. Appl. Microbiol. Biotechnol. 52: 360-365 https://doi.org/10.1007/s002530051532
  6. Cooper, P. F., J. A. Hobson, and S. Jowes. 1989. Sewage treatment by reed bed systems. J. Ins. Wat. Environ. Man. 3: 60-74 https://doi.org/10.1111/j.1747-6593.1989.tb01367.x
  7. Daane, L. L., I. Harjono, G. J. Zylstra, and M. M. Haggblom. 2001. Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated with the rhizosphere of salt marsh plants. Appl. Environ. Microbiol. 67: 2683-2691 https://doi.org/10.1128/AEM.67.6.2683-2691.2001
  8. Deeb, R. A. and L. Alvarez-Cohen. 1998. Temperature effects and substrate interactions during the aerobic biotransformation of BTEX mixtures by toluene-enriched consortia and Rhodococcus rhodochrous. Biotechnol. Bioeng. 61: 526-536
  9. Farrell, R. E., C. M. Frick, and J. J. Germida. 2000. Phyto-Pet$^{\circledR}$: A database of plants that play a role in the phytoremediation of petroleum hydrocarbons. pp. 29-40, Proceedings of the Second Phytoremediation Technical Seminar, Environment, Canada, Ottawa, ON
  10. Ferguson, R. L., E. N. Buckley, and A. V. Palumbo. 1984. Response of marine bacterioplankton to differential filtration and confinement, Appl. Environ Microbiol. 47: 49-55
  11. Gersberg, R. M., B. V. Elkins, S. R. Lyon, and C. R. Goldman. 1986. Role of aquatic plants in wastewater treatment by artificial wetlants. Water Res. 20: 363-368 https://doi.org/10.1016/0043-1354(86)90085-0
  12. Greene, E. A., J. G. Kay, K. Jaber, L. G. Stehmeier, and G. Voordouw. 2000. Composition of soil microbial communities enriched on a mixture of aromatic hydrocarbons. Appl. Environ. Microbiol. 66: 5282-5289 https://doi.org/10.1128/AEM.66.12.5282-5289.2000
  13. Hobbie, J. E., R. J. Daley, and S. Jasper. 1997. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33: 1225-1228
  14. Iida, T., Y. Mukouzaka, K. Nakamura, and T. Kudo. 2002. Plasmid-borne genes code for angular dioxygenase involved in dibenzofuran degradation by Terrabacter sp. strain YK3. 68: 3716-3723 https://doi.org/10.1128/AEM.68.8.3716-3723.2002
  15. Kahng, H.-Y., J. C. Malinvemi, M. M. Majko, and J. J. Kurkor. 2001. Genetic and functional analysis of the tbc operons for catabolism of alkly- and chloroaromatic compounds in Burkholderia sp. strain JS150. Appl. Environ. Microbiol. 67: 4805-4816 https://doi.org/10.1128/AEM.67.10.4805-4816.2001
  16. Kern, J. and C. Idler. 1999. Treatment of domestic and agricultural wastewater by reed bed systems. Ecol. Eng. 12: 13-25 https://doi.org/10.1016/S0925-8574(98)00051-2
  17. Lee, M.-S., S.-K Hong, D.-H. Lee, C.-K. Kim, and K.-S. Bae. 2001. Bacterial diversity in the mud flat of Sunchon bay, Chunnam province, by 16S rRNA gene analysis. Kor. J. Microbiol. 37: 137-144
  18. Leisinger, T. 1981. Microbial degradation of xenobiotic and recalcitrant compounds. Academic press, London. U.K
  19. Mantovi, P., M. Marmiroli, E. Maestri, S. Tagliavini, S. Piccinini, and N. Marmiroli. 2003. Application of a horizontal subsurface flow constructed wetland on treatment of dairy parlor wastewater. Bioresour. Technol. 88: 85-94 https://doi.org/10.1016/S0960-8524(02)00291-2
  20. McLean, E. O. 1982. Soil pH and lime requirement. In Page, A. L., R. H. Miller and D. R. Keeney (eds.) Methods of soil analysis. Part 2 - chemical and microbiological properties. (2nd Ed.). Agronomy 9: 199-224
  21. Mikesell, M. D., J. J. Kukor, and R. H. Olsen. 1993. Metabolic diversity of aromatic hydrocarbon-degrading bacteria form a pertolewn-contaminated aquifer. Biodegradation 4: 249-259 https://doi.org/10.1007/BF00695973
  22. Muratova, A., T. Hbner, N. Narula, H. Want, O. Turkovskaya, P. Kuschk, R. Jahn, and W Merbach. 2003. Rhizosphere microflora of plants used for the phytoremediation of bitumencontaminated soil. Microbiol. Res. 158: 151-161 https://doi.org/10.1078/0944-5013-00187
  23. Obarska-Pempkowiak, H. and K. Klimkowska. 1999. Distribution of nutrients and heavy metals in a constructed wetland system. Chemosphere 39: 303-312 https://doi.org/10.1016/S0045-6535(99)00111-3
  24. Olsen, R. H. and J. Hansen. 1976. Evolution and utility of a Pseudomonas aeruginosa PAO chromosome. J. Bacteriol. 150: 60-69
  25. Ostendrop, W 1989. 'Die-back' of reeds in Europe-a critical review of literature. Aqua. Bot. 35: 5-26 https://doi.org/10.1016/0304-3770(89)90063-6
  26. Rhee S. K., G M. Lee, and S. T. Lee. 1994. Biodegradation of pyridine by freely suspended and immobilized Pimelobacter sp. Appl. Microbiol. Biotechnol. 41: 652-657 https://doi.org/10.1007/BF00167280
  27. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  28. Shim, W-S. and I.-S. Han. 1998. Effect of reed-bed using Ulsan-habitated P. australis, T. orientalis, and P. aundinacea L. on removing pollutants from sewage. J. Kor Env. Sci. Soc. 7: 117-121
  29. Ward, D. M., R. Weller, and M. M. Bateson. 1990. 16S rRNA sequences reveal uncultured inhabitants of a well studied thermal community. FEMS Microbiol. Rev. 6: 105-115