Study on blood compatibility of diamond-like carbon and titanium nitride films

Diamond-like carbon 및 titanium nitride 박막의 혈액적합성 연구

  • Yun Ju-Young (Vacuum center, Korea Research Institute of Standards and Science) ;
  • Bae Jin-Woo (Department Molecular Science & Technology, Ajou University) ;
  • Park Ki-Dong (Department Molecular Science & Technology, Ajou University) ;
  • Goo Hyun-Chul (Dentkist, Inc. Biomaterials Research Institute) ;
  • Park Hyung-Dal (Pharmaceutical Exam. Div. Korean Intellectual Property office) ;
  • Chung Kwang-Wha (Vacuum center, Korea Research Institute of Standards and Science)
  • 윤주영 (한국표준과학연구원 진공센터) ;
  • 배진우 (아주대학교 분자과학기술학과) ;
  • 박기동 (아주대학교 분자과학기술학과) ;
  • 구현철 ((주)덴키스트 생체재료연구소) ;
  • 박형달 (특허청 약품화학심사담당관실) ;
  • 정광화 (한국표준과학연구원 진공센터)
  • Published : 2005.09.01

Abstract

There is an increasing interest in developing novel coating to improve the blood compatibility of medical implants. Diamond-like carbon(DLC) and titanium nitride(TiN) films have been proposed as potential biomedical coatings due to their chemical k physical properties and moderate biocompatibility. To study the correlation between blood compatibility and physical properties of the films, the fibrinogen adsorption on the surface as well as morphology & wettability were investigated. The quantity of fibrinogen adsorption are Tower for TiN than DLC, which correlates with a higher hydrophilicity of TiN film. To reduce the quantity of fibrinogen adsorption on the film, plasma treatment and furnace annealing were performed, respectively. With the use of oxygen plasma and furnace annealing, the amount of fibrinogen adsorption on TiN film was remarkably reduced, while there was no decrease of the quantity with DLC.

의료용 임플랜트의 혈액적합성 개선을 위하여 박막코팅에 대한 관심이 증대하고 있다. 특히 diamond-like carbon(DLC)과 titanium nitride(TiN) 박막은 우수한 화학, 물리적 성질은 물론 생체적합 특성까지 갖추고 있다. 따라서 이들 박막의 혈액 적합성과 물리적 특성과의 관개를 연구하기 위하여 박막표면의 모폴로지 및 젖음성과 fibrinogen흡착 특성을 비교 분석하였다. 혈액응고 원인이 되는 fibrinogen의 흡착량은 DLC보다 TiN의 경우가 적어, 보다 우수한 특성을 보였으며, 이것은 TiN박막 표면의 높은 친수성으로 인한 것으로 판단된다. 박막표면의 fibrinogen 흡착을 줄이기 위해 플라즈마 처리 및 노(爐) 열처리를 각각 수행하였다. 산소 플라즈마 및 열처리를 하였을 경우 DLC 박막은 큰 효과가 없는 반면 TiN 박막의 경우 fibrinogen 흡착량이 크게 줄어 보다 개선된 결과를 보였다.

Keywords

References

  1. S. Mandl and B. Rauschenbach, Surface and Coatings Technology 156, 276 (2002) https://doi.org/10.1016/S0257-8972(02)00085-3
  2. Y. H. Kim, D. K. Han, K. D. Park, and S. H. Kim, Biomaterials 24, 2213 (2003) https://doi.org/10.1016/S0142-9612(02)00221-1
  3. F. Z. Cui and D. J. Li, Surface and Coatings Technology 99, 577 (2000)
  4. K. D. Park, W. K. Lee, J. Y. Yun, D. K. Han, S. H. Kim, Y. H. Kim, H. M. Kim, and K. T. Kim, Biomaterials 18, 47 (1997) https://doi.org/10.1016/S0142-9612(96)00096-8
  5. F. Zhang, X. Liu, Y. Mao, N. Huang, Y. Chen, Z. Zheng, Z. Zhou, A. Chen, and Z. Jiang, Surface and Coatings Technology 103-104, 136 (1998)
  6. K. Christensen, R. Larsson, H. Emanuelsson, G. Elgue, and A. Larsson, Thrombosis Research 115, 245 (2005) https://doi.org/10.1016/j.thromres.2004.08.030
  7. E. Grenadier, A. Roguin, I. Hertz, B. Peled, M. Boulos, E. Nikolsky, S. Amikam, A. Kerner, S. Cohen, and R. Bayer, Catheterization and Cardiovascular Interventions 55, 303 (2002) https://doi.org/10.1002/ccd.10130
  8. H. T. Spijker, R. Graaff, P. W. Boonstra, H. J. Busscher, and W. van Oeveren, Biomaterials 24, 4717 (2003) https://doi.org/10.1016/S0142-9612(02)00221-1
  9. O. F. Bertrand, R. Sipehia, R. Mongrain, J. Rodes, J. Tardif, L. Bilodeau, G. Cote, and M. G. Bourassa, J Am Coll Cardiol. 32, 562 (1998) https://doi.org/10.1016/S0735-1097(98)00289-7
  10. S. Muhl and J. M. Mendez, Diamond and Related Materials 8, 1809 (1999) https://doi.org/10.1016/S0925-9635(99)00142-9
  11. F. Z. Cui and D. J. Li, Surface and Coatings Technology 131, 481 (2000) https://doi.org/10.1016/S0257-8972(00)00809-4
  12. O. Durand-Drouhin, M. Benlahsen, M. Clin, and R. Bouzerar, Applied Surface Science, ??? (2003)
  13. H. Clemens, D. W. Schubert, G. Dehm, C. Scheu, J. L. Buttstaedt, Applied Surface Science 219, 329 (2003) https://doi.org/10.1016/S0169-4332(03)00704-9
  14. F. Berme, J. Buttstaedt, and G. Emig, Thin Solid Films 377-378, 755 (2000)
  15. I. Tsyganov, M. F. Maitz, E. Wieser, E. Richter, and H. Reuther, Surface and Coatings Technology (2005)
  16. K. M. Hansson, S. Tosatti, J. Isaksson, J. Wettero, M. Textor, T. L. Lindahl, and P. Tengvall, Biomaterials 26, 861 (2005) https://doi.org/10.1016/j.biomaterials.2004.03.036
  17. N. Huang, P. Yang, Y. X. Leng, J. Y. Chen, H. Sun, J. Wang, G. J. Wang, P. D. Ding, T. F. Xi, and Y. Leng, Biomaterials 24, 2177 (2003) https://doi.org/10.1016/S0142-9612(02)00221-1
  18. J. S. Cho, Y. W. Beag, S. Han, K. H. Kim, J. Cho, and S. K. Koh, surface and Coatings Technology 128-129, 66 (2000)
  19. L. Sirghi, T. Aoki, and Y. Hantanaka, Thin Solid Films 422, 55 (2002) https://doi.org/10.1016/S0040-6090(02)00949-5
  20. M. Takeuchi, Y. Onozaki, Y. Matsumira, H. Uchida, and T. Kuji, Nuclear Instruments and Methods in Physics Research, B 206, 259 (2003) https://doi.org/10.1016/S0168-583X(03)00736-5
  21. M. I. Jones, I. R. McColl, D. M. Grant, K. G. Parker, and T. L. Parker, Diamond and Related Materials 8, 457 (1999) https://doi.org/10.1016/S0925-9635(98)00426-9