파랑하중을 받는 부유식 구조물의 동적거동에 대한 주파수영역 해석

Frequency Domain Analysis for Dynamic Response of Floating Structures Subject to Wave Loading

  • 권장섭 (특허청 건설기술심사관담당실) ;
  • 백인열 (경원대학교 토목환경공학과) ;
  • 박정일 (서울대학교 지구환경시스템공학부) ;
  • 장승필 (서울대학교 지구환경시스템공학부)
  • Kwon Jang Sub (Civil Eng. & Architecture Exam. Div., Korean Intellectual Property Oiffice) ;
  • Paik In Yeol (Department of Civil and Environmental Engineering, Kyungwon University) ;
  • Park Jung Il (School of Civil, Urban & Geosystem Engineering, Seoul National University) ;
  • Chang Sung Pil (School of Civil, Urban & Geosystem Engineering, Seoul National University)
  • 발행 : 2005.09.01

초록

부유체 및 부유식 교량과 같은 부유식 구조물이 파랑하중에 대하여 나타내는 동적거동을 주파수영역에서 구하는 연구를 수행하였다. 먼저, 부분적으로 유체에 잠겨 파랑하중의 작용을 받는 부유체에 대하여, 이의 강체운동과 관련된 동유체력계수인 부가질량, 감쇠 및 파강제력를 선형포텐셜이론과 경계요소법을 이용하여 주파수 영역에서 산정한다 다음으로,부유식 교량과 같이 앞에서 구한 부유체로 지지되며 유한요소를 이용하여 모델링 되는 부유식 구조물에 대하여, o)의 동적거동에 관한 운동방정식을 수립한다. 동유체력계수들이 주파수 의존적 성질을 가지므로 해석은 주파수영역에서 수행한다. 적용 예제로서 반구와 같은 부유체를 이용하여 해석결과를 문헌과 비교 검증한 후,부유식 교량을 지지하는 폰툰형 부유체에 대한 동유체력계수들을 구하고, 이를 이용하여 설계 파랑하중을 받는 부유식 교량의 동적 거동해석을 수행한다. 해석 예제를 주파수영역에서 해석한 결과 입사파스펙트림의 피크 주파수와 교량의 고유진동수가 가까워 응답이 증폭될 소지가 있었으나 주파수 의존적인 파강제력의 피크가 벗어난 영향으로 응답이 증폭되지 않음을 알 수 있다.

Dynamic response of floating structures such as floating body and floating bridges subject to wave load is to be calculated in frequency domain. Added mass coefficient, damping coefficient and wave exciting force are obtained numerically from frequency domain formulation of linear potential theory and boundary element method for a floating body which is partially submerged into water and subjected to wave force. Next, the equation of motion for the dynamic behavior of a floating structure which is supported by the floating bodies and modeled with finite elements is written in frequency domain. hker a hemisphere is analyzed and compared with the published references as examples of floating bodies, the hydrodynamic coefficients for a pontoon type floating body which supports a floating bridge are determined. The dynamic response of the floating bridge subject to design wave load can be solved using the coefficients obtained for the pontoons and the results are plotted in the frequency domain. It can be seen from the example analysis that although the peak frequency of the incoming wave spectrum is near the natural frequency of the bridge, the response of the bridge is not amplified due to the effect that the peak frequency of wave exciting force is away from the natural frequency of the bridge.

키워드

참고문헌

  1. 백인열, 권장섭, 이원표, 장승필 (2002). 이산 폰툰형 부유식 교량의 동적 해석. 대한토목학회논문집, 22(20-A), 327-336
  2. 현대건설 기술연구소 (1997), 부유식 구조물 해석.시스템 개발. 94STR08
  3. Beauchamp, C. and Brocard, D. (1981). Dynamic response of floating bridge to wave forces. SCE/EMD Specialty Conference on Dynamic Response of Structures, Atlanta, Ga
  4. Chalmers University (1988). Dynamic simulation of floating bridge. Report 88(6), Department of Structural Mechanics Chalmers University of Technology, Sweden
  5. Chang, S.P., Park, J.I. and Kim, J.K. (1992). A dynamic analysis of tension leg platform using the general curved boundary element. Proceedings of the Second International Offshore and Polar Engineering Conference, San Francisco, USA, 1,228-234
  6. Hammarstroem, J. and Forsvall, A. (1990). GVA pontoon bridge concept. Second Symposium on Strait Crossings, Tronheim, Norway
  7. Hulme, A. (1982). The wave forces acting on a floating hemisphere undergoing forced periodic oscillations. Journal of Fluid Mechanics, 121,443-463 https://doi.org/10.1017/S0022112082001980
  8. Liu, Y.H. and Kim, C.H. (1991). Comparison of higher order boundary element and panel methods for hydrodynamic loadings. Journal of Offshore and Polar Engineering, 1 (1), 8-17
  9. Loeken, A., Oftedal, R. and Aarsnes, J, (1990). Aspects of hydrodynamic loading and response in design of floating bridges. Second Symposium on Strait Crossings, Tronheim, Norway
  10. Luft, R. (1981). Analysis of floating bridges. The Hood Canal Bridge, ASCE/EMD Specialty Conference on Dynamic Response of Structures, Atlanta, Ga
  11. Newman, J.N. (1985). Distributions of sources and normal dipoles over a quadrilateral panel. Report MA 02139, MIT
  12. Newman J.N. (1986). Marine Hydrodynamics. The MIT Press
  13. Vabo, P., Loen, A., Leira, B. and Remseth, S. (1990). Feasibility of a semi-submersible floating bridge. Second Symposium on Strait Crossings, Tronheim, Norway