A Study of Optimal Model for the Circuit Configuration of Korean Pulsatile Extracorporeal Life Support System (T-PLS)

한국형 박동식 생명구조장치(T-PLS) 순환회로를 위한 최적화 모델 연구

  • Lim Choon Hak (Department of Anesthesiology and Pain Medicine, College of Medicine, Korea University) ;
  • Son Ho Sung (Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University) ;
  • Lee Jung Joo (Korea Artificial Organ Center, Korea University) ;
  • Hwang Znuke (Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University) ;
  • Lee Hye Won (Department of Anesthesiology and Pain Medicine, College of Medicine, Korea University) ;
  • Kim Kwang Taik (Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University) ;
  • Sun Kyung (Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University)
  • 임춘학 (고려대학교 의과대학 마취통증의학교실) ;
  • 손호성 (고려대학교 의과대학 흉부외과학교실) ;
  • 이정주 (한국인공장기센터) ;
  • 황진욱 (고려대학교 의과대학 흉부외과학교실) ;
  • 이혜원 (고려대학교 의과대학 마취통증의학교실) ;
  • 김광택 (고려대학교 의과대학 흉부외과학교실) ;
  • 선경 (고려대학교 의과대학 흉부외과학교실)
  • Published : 2005.10.01

Abstract

Background: We have hypothesized that, if a low resistant gravity-flow membrane oxygenator is used, then the twin blood sacs of TPLS can be located at downstream of the membrane oxyenator, which may double the pulse rate at a given pump rate and increase the pump output. The purpose of this study was to determine the optimal configuration for the ECLS circuits by using the concept of pulse energy and pump output. Material and Method: Animals were randomly assigned to 2 groups in a total cardiopulmonary bypass model. In the serial group, a conventional membrane oxygenator was located between the twin blood sacs. In the parallel group, the twin blood sacs were placed downstream of the gravity-flow membrane oxygenator. Energy equivalent pressure (EEP) and pump output were collected at pump-setting rates of 30, 40, and 50 BPM. Result: At the given pump-setting rate, the pulse rate was doubled in the parallel group. Percent changes of mean arterial pressure to EEP were $13.0\pm1.7,\; 12.0\pm1.9\;and\;7.6\pm0.9\%$ in the parallel group, and $22.5\pm2.4,\; 23.2\pm1.9,\;and\;21.8\pm1.4\%$ in the serial group at 30, 40, and 50 BPM of pump-setting rates. Pump output was higher in the parallel circuit at 40 and 50 BPM of pump-setting rates $(3.1\pm0.2,\;3.7\pm0.2L/min\;vs.\;2.2\pm0.1\;and\;2.5\pm0.1L/min,\;respectively,\;p=0.01)$. Conclusion: Either parallel or serial circuit configuration of the ECLS generates effective pulsatility. As for the pump out, the parallel circuit configuration provides higher flow than the serial circuit configuration.

배경: 체외순환장치 중 막형산화기를 사용하는 인공심폐기나 생명구조장치(Extra-corporeal Life Support System; ECLS)는 혈액이 통과하기 위해 막형산화기 전방에 구동점프가 요구된다. 국내에서 개발된 박동식 생명구조장치(T-PLS)의 경우는 막형산화기가 두 개의 혈액주머니 사이에 위치하여 액츄에이터가 번갈아 까내는 구조로 되어 있다 저자 등은, 만일 저항이 낮은 gravity-flow hollow fiber 막형산화기를 사용한다면 두 개의 혈액주머니와 박동점프를 막형산화기 후방에 설치하는 것이 가능하며, 이러한 구조는 같은 펌프박동 조건에서 2배의 맥박수를 보장하므로 펌프박출량이 증가될 것으로 가정하였다. 본 실험은 한국형 생명구조장치의 회로구성을 최적화하기 위해 계획되었으며, 기존의 막형산화기를 사용한 직렬회로구조와 gravity-flow hollow fiber 막형산화기를 이용한 병렬회로 구조를 박동에너지와 펌프박출량을 이용하여 비교하였다. 대상 및 방법: 실험은 $35\~45kg$의 돼지 12마리에서 심실세동혈 심정지 모델을 만들었으며, T-PLS 회로구성 형태에 따라 두 군으로 나누었다. 직렬군은 두 개의 혈액주머니 중간에 기존 막형산화기를 직렬로 설치하였으며, 병렬군은 gravity-flow hollow fiber막형산화기 후방에 이중구동점프를 병렬로 설치하였다. 펌프박출량은 대동맥 도관에서 직접 혈류를 측정하였고, 등가압력에너지(EEP)는 실시간으로 컴퓨터에 저장된 펌프박출곡선과 하행대동맥 혈압곡선에서 계산하였다. 각 지표는 점프속도 30, 40, 50 BPM에서 매번 측정하였다. 결과: 두 군 모두 박동에너지 측면에서 충분한 박동성을 보여주었다. 점프속도 30, 40, 50 BPM에서 EEP와 평균동맥압의 변화율은 병렬군의 경우 $13.0\pm.7\%,\;12.0\pm1.9\%,\;and\;7.6\pm0.9\%$였으며, 직렬군의 경우 $22.5\pm2.4\%,\;23.2\pm1.9\%,\;and\;21.8\pm1.4\%$였다. 점프박출량의 경우는 점프속도 40, 50 BPM에서 병렬군의 경우 $3.1\pm0.2\;and\;3.7\pm0.2L/min$였으며, 직렬군의 경우 $2.2\pm0.1\;and\;2.5\pm0.1\;L/min$였다(p<0.05). 결론: 혈류 저항이 낮은 gravity-flow 막형산화기를 사용하여 T-PLS 구동점프를 병렬회로로 배치할 경우 효과적인 박동성은 유지하면서, 기존의 막형산화기를 이용한 직렬회로 구조에 비해 점프박출량을 증가시켰다.

Keywords

References

  1. Kim HK, Son HS, Fang YH, et al. The effects of pulsatile flow on renal tissue perfusion during cardiopulmonary bypass: A comparative study of pulsatile and nonpulsatile flow. ASAIO J 2005;51:30-6 https://doi.org/10.1097/01.MAT.0000150324.02040.B4
  2. Son HS, Sun K, Fang YH, et al. The effects of pulsatile versus non-pulsatile extracorporeal circulation on the pattern of coronary artery blood flow during cardiac arrest. Int J Artif Organs 2005;28:609-16
  3. Shepard RB, Simpson DC, Sharp JF. Energy equivalent pressure. Arch Surg 1966;93:730-40 https://doi.org/10.1001/archsurg.1966.01330050034005
  4. Undar A, Zapanta CM, Reibson JD, et al. Precise quantification of pressure flow waveforms of a pulsatile ventricular assist device. ASAIO J 2005;51:56-9 https://doi.org/10.1097/01.MAT.0000150326.51377.A0
  5. Wright G. Hemodynamic analysis could resolve the pulsatile blood flow controversy. Ann Thorac Surg 1994;58:1199-204 https://doi.org/10.1016/0003-4975(94)90498-7
  6. Kim TS, Sun K, Lee KB, et al. Application of a pressure- relieving air compliance chamber in a single-pulsatile extracorporeal life support system: An experimental study. Artif Organs 2004;28:1106-9 https://doi.org/10.1111/j.1525-1594.2004.07341.x
  7. Lee HS, Rho YR, Lee HS, et al. In vivo evaluation of the pulsatile ECLS system. J Artif Organs 2003;6:25-9 https://doi.org/10.1007/s100470300004
  8. Sun K, Son HS, Jung JS, et al. Korean artificial heart (AnyHeart):An experimental study and the first human application. Artif Organs 2003;27:8-13 https://doi.org/10.1046/j.1525-1594.2003.07173.x
  9. Shin JS, Sun K, Son HS, et al. A preclinical cadaver fitting study of implantable biventricular assist device-AnyHeart. Int J Artif Organs 2004;27:495-500 https://doi.org/10.1177/039139880402700608
  10. Rho YR, Choi H, Lee JC, et al. Applications of the pulsatile flow versatile ECLS: in vivo studies. Int J Artif Organs 2003;26:428-35
  11. Undar A, Frazier OH, Fraser CD Jr. Defining pulsatile perfusion: Quantification in terms of energy equivalent pressure. Artif Organs 1999;23:712-6 https://doi.org/10.1046/j.1525-1594.1999.06409.x
  12. Undar A, Eichstaedt HC, Bigley JE, et al. Effects of pulsatile and nonpulsatile perfusion on cerebral hemodynamics investigated with a new pediatric pump. J Thorac Cardiovasc Surg 2002;124:413-6 https://doi.org/10.1067/mtc.2002.125209
  13. Lee JJ, Lim CH, Son HS, et al. In vitro evaluation of the performance of Korean pulsatile ECLS (T-PLS) using precise quantification of pressure-flow waveforms. ASAIO J 2005 (in press)
  14. Shin HK, Won YS, Lee JY, et al. Application of the pulsatile cardiopulmonary bypass in animal model. Korean J Thorac Cardiovasc Surg 2004;37:1-10