Synthesis and Characterization of Non-Conjugated Polymers with Hole-Conductor and Red-Emitter in Side-Chain

정공 전달물질 및 적색발광 물질이 곁사슬에 포함된 비공액 고분자의 합성과 특성 분석

  • Published : 2005.09.01

Abstract

Into a no-conjugated polymer chain we have introduced side chains with a styrene-linked triphenylamine segment as a $\pi-electron$ donor, styrene-]inked aminobenzaldehyde segment as a tunable reactive -CHO group, and PM (4-(dicyanomethylene)-2-(tert-butyl)-4H-pyran) moiety as a $\pi-electron$ acceptor for red emitting materials. The thermal stability and the optical properties of the statistical copolymers have been studied. All the polymers were electrochemically active and showed electroluminescent emission at around 700nm. The EL device of P5-PM based on the sturcture of $ITO/PPV/polymer/BCP/Alq_3/Al$ showed a maximum brightness of $120cd/m^2\;at\;50mA/cm^2$ with an external quantum efficiency of $0.67\%$. It was possible to enhance the external quantum efficiency by balancing the charge recombination. A red-emitting polymer with high external quantum efficiency was developed by incorporating bifunctionality.

적색을 낼 수 있는 물질을 만들기 위해 비공액 주사슬로 되어 있는 고분자의 곁사슬에 스티렌 분자가 연결되어 있는 트리페닐아민, 반응성 있는 작용기를 가진 아미노벤즈알데히드 그룹, 및 PM(4-(dicyanomethylene)-2-(tertbutyl)4H-pyran) 그룹을 도입하였다. 이 고분자의 전자 흡수 스펙트럼은 용액과 필름 상태에서 비슷하였다. 모든 고분자는 전기화학적으로 활성을 보였으며, 전기 발광 소자를 작동하였을 때 700nm 근처에서 적색을 보였다. $ITO/PPV/P5-PM/BCP/Alq_3/Al$으로 구성된 소자는 $50mA/cm^2$의 낮은 전류 밀도에서 $120cd/m^2$의 밝기를 보였으며, 외부 양자 효율은 $0.67\%$를 나타내었다. 발광 고분자 층에서의 균형있는 전하의 재결합을 유도하여 소자의 발광 효율을 높일 수 있었다. 이중 기능성(bifunctionalized)을 도입함으로써 적색 발광을 내면서 효율이 높은 발광 고분자를 개발하였다.

Keywords

References

  1. J. H. Burroughs, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature, 347, 539 (1990) https://doi.org/10.1038/347539a0
  2. C.H. Chen, K. P. Klubek, and J. Shi, U. S. Patent 5,908,581 (1999)
  3. Qiang Peng, Zhi-Yun Lu, Yan Huang, Ming-Gui Xie, Shao-Hu Han, Jun-Biao Peng, and Yong Cao, Macromolecules, 37, 260 (2004) https://doi.org/10.1021/ma0355397
  4. I. D. Parker and M. Marrocco, Appl. Phys. Lett., 1994, 65(1994)
  5. S. Son, A. Dodabalaqur, A. J. Lovinger, and M.E. Galvin, Science, 269, 376 (1995) https://doi.org/10.1126/science.269.5222.376
  6. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913(1987) https://doi.org/10.1063/1.98983
  7. M. Behl, E. Hattemer, M. Brehmer, and R. Zentel, Macromol. Chem. Phys., 203, 503 (2002) https://doi.org/10.1002/1521-3935(20020201)203:3<503::AID-MACP503>3.0.CO;2-P
  8. M. Tamada, H. Koshikawa, F. Hosoi, T. Suwa, H. Usui, A. Kosaka, and H. Sato, Polymer, 40, 3061 (1999) https://doi.org/10.1016/S0032-3861(98)00522-9
  9. C. H. Chen, J. Shi, and C. W. Tang, Macromol. Symp., 125, 1. (1997)
  10. C. H. Chen, C. W. Tang, J. Shi, and K. P. Klubek, Thin Solid Films, 363, 327 (2000) https://doi.org/10.1016/S0040-6090(99)01010-X
  11. E. Bacher, M. Bayerl, P. Rudati, N. Reckefuss, C. D. Muller, K. Meerholz, and O. Nuyken, Macromolecules, 38, 1640 (2005) https://doi.org/10.1021/ma048365h
  12. R. B. Grubbs, J. K. Wegrzyn, and Q. Xia, Chem. Comm., 80 (2005)
  13. Craig J. Hawker, J. Am. Chem. Soc., 116, 11185 (1994) https://doi.org/10.1021/ja00103a055
  14. S. E. Shaheen, G. E. Jabbour, B. Kippelen, N. peyghambarian, J. D. Anderson, S. R. Marder, N. R. Armstrong, E. Bellmann, and R. H. Grubbs, Appl. Phys. Lett., 74, 3212 (1999) https://doi.org/10.1063/1.124108
  15. B. J. Jung, C. B. Yoon, H. K. Shim, L. M. Do, and T. Zyung, Adv. Funct. Mater., 11, 430 (2001) https://doi.org/10.1002/1616-3028(200112)11:6<430::AID-ADFM430>3.0.CO;2-G
  16. Q. Peng, Z. Lu, Y. Huang, M. Xie, S. Han, J. Peng, and Y. Cao, Macromolecules, 37, 260 (2004) https://doi.org/10.1021/ma0355397
  17. Y. Q. Liu, H. Ma, and A. K-Y. Jen, Chem. Comm., 24, 2747 (2003)
  18. J. Li, D. Liu, Z. Hong, S. Tong, P. Wang, C. Ma, O. Lengyel, C. Lee, H. Kwong, and S. Lee, Chem. Mater., 15, 1486 (2003) https://doi.org/10.1021/cm020766t
  19. R. H. Friend, Pure Appl. Chem., 73, 425 (2001) https://doi.org/10.1351/pac200173010001
  20. S. K. So, W. K. Choi, L. M. Leung, and K. Neyts, Appl. Phys. Lett., 74, 1939 (1999) https://doi.org/10.1063/1.123734
  21. T. V. Woudenbergh, J. Wildeman, P. W. M. Blom, J. J. A. M. Bastiaansen, and B. M. W. Langeveld-Vos, Adv. Funct. Mater., 141, 677 (2004)
  22. M. Inbasekaran, E. Woo, W. Wu, M. Bernius, and L. Wujkowski, Synth. Met., 111, 397 (2000) https://doi.org/10.1016/S0379-6779(99)00382-3
  23. Q. Fang and T. Yamamoto, Macromolecules, 37, 5894 (2004) https://doi.org/10.1021/ma0359133
  24. V. Coropceanu, N. E. Gruhn, S. Barlow, C. Lambert, J. C. Durivage, T. G. Bill, G. Noell, S. R. Marder, and J.-L. Bredas, J. Am. Chem. Soc., 126, 2727 (2004) https://doi.org/10.1021/ja039263u
  25. E. Bacher, M. Bayerl, P. Rudati, N. Reckefuss, C. D. Muller, K. Meerholz, and O. Nuyken, Macromolecules, 38, 1640 (2005) https://doi.org/10.1021/ma048365h