A Study on Thermal and Mechanical Properties of Vapor Grown Carbon Nanofibers-Reinforced Epoxy Matrix Composites

기상성장 탄소나노섬유/에폭시 복합재료의 열적 및 기계적 특성에 관한 연구

  • Park Soo-Jin (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Lee Eun-Jung (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Lee Jea-Rock (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • 박수진 (한국화학연구원 화학소재연구부) ;
  • 이은정 (한국화학연구원 화학소재연구부) ;
  • 이재락 (한국화학연구원 화학소재연구부)
  • Published : 2005.09.01

Abstract

In this work, the thermal and mechanical properties of vapor grown carbon nanofibers (VGCNFs)-reinforced difunctional epoxy (EP) composites were investigated in the presence of the 0, 0.1, 0.5, 1.0, and $2wt\%$ VGCNFs. The thermal properties of the VGCNFs/EP composites were studied by thermo-mechanical analysis (TMA) and dynamic mechanical analysis (DMA). The mechanical properties of the VGCNFs/EP composites were also examined by universal testing machine (UTM), falling impact test, and the friction and wear tests. From experimental results, the thermal and mechanical properties of the VGCNFs/EP composites were improved with increasing the VGCNFs contents. This was due to the increase of crosslinking structure of the composites, resulting in improving the mechanical interlockings between VGCNFs and epoxy resins in the present composite system.

본 연구에서는 2관능성 에폭시 수지에 기상성장 탄소나노섬유(VGCNFs)를 0, 0.1, 0.5, 1.0 그리고 $2wt\%$ 함량 비로 첨가하여, 제조한 VGCNFs/에폭시 복합재료의 열적 및 기계적 특성을 고찰하고자 하였다. VGCNFs/에폭시 나노복합재료의 열적 특성은 TMA와 DMA로 알아보았으며, 기계적 특성은 만능 시험기와 낙하 충격 시험기 및 마찰$\cdot$마모 시험기를 통하여 관찰하였다. 실험 결과. VGCNFs의 함량이 증가할수록 열적 및 기계적 특성이 향상됨을 확인할 수 있었는데, 이는 현재의 복합재료 시스템에 있어서 VGCNFs와 에폭시 사이의 기계적 얽힘 현상의 향상을 가져오는 복합재료의 가교구조의 증가 때문이라 판단된다.

Keywords

References

  1. J. B. Donnet and R. C. Bansal, Carbon Fibers, 2nd Ed., Marcel Dekker, New York, 1990
  2. E. Fitzer, Carbon Fibers and Their Composites, McGraw-Hill, New York, 1992
  3. O. M. Kuttel, O. Groening, C. Emmenegger, and L. Schlapbach, Appl. Phys. Lett., 73, 2113 (1998) https://doi.org/10.1063/1.122395
  4. M. Endo, Y. A. Kim, M. Ezaka, K. Osada, T. Yanagisawa, T. Hayashi, M. Terrones, and M. S. Dresselhaus, Nano Lett., 3, 723 (2003) https://doi.org/10.1021/nl020207l
  5. M. K. Seo and S. J. Park, Chem. Phys. Lett., 44, 395 (2004)
  6. P. V. Lakshminarayanan, H. Toghiani, and C. U. Pittman, Carbon, 42, 2433 (2004) https://doi.org/10.1016/j.carbon.2004.04.040
  7. A. Oberlin and M. Endo, J. Cryst. Growth, 32, 335 (1976) https://doi.org/10.1016/0022-0248(76)90115-9
  8. G. G. Tibbetts, Appl. Phys. Lett., 42, 666 (1983) https://doi.org/10.1063/1.94066
  9. F. Benissad, P. Gadelle, M. Coulon, and L. Bonntain, Carbon, 26, 61 (1988) https://doi.org/10.1016/0008-6223(88)90010-3
  10. A. Arenillas, S. Cuervo, A. Dominguez, J. A. Menedez, F. Rubiera, J. B. Parra, C. Merino, and J. J. Pis, Thermochim. Acta, 423, 99 (2004) https://doi.org/10.1016/j.tca.2004.05.002
  11. R. D. Patton, C. U. Pittman, L. Wang, and J. R. Hill, Composites A, 30, 1081 (1999) https://doi.org/10.1016/S1359-835X(99)00018-4
  12. M. K. Seo, S. J. Park, and S. K. Lee, J. Colloid Interf. Sci., 285, 306 (2005) https://doi.org/10.1016/j.jcis.2004.10.068
  13. M. Endo, Y. A. Kim, T. Hayashi, K. Nishimura, T. Matusita, K. Miyashita, and M. S. Dresselhaus, Carbon, 39, 1287 (2001) https://doi.org/10.1016/S0008-6223(00)00217-7
  14. G. M. Wu, Mater. Chem. Phys., 85, 81 (2004) https://doi.org/10.1016/j.matchemphys.2003.12.004
  15. X. Wu, Z. Wang, L. Chen, and X. Huang, Carbon, 42, 1965 (2004) https://doi.org/10.1016/j.carbon.2004.03.035
  16. T. Muhl, J. Kretz, I. Monch, C. M. Schneider, H. Bruckl, and G. Reiss, Appl. Phys. Lett., 76, 786 (2000) https://doi.org/10.1063/1.125895
  17. J. P. Giltrow and J. K. Lancaster, Wear, 12, 91 (1968) https://doi.org/10.1016/0043-1648(68)90337-2
  18. J. P. Giltrow and J. K. Lancaster, Wear, 16, 359 (1970) https://doi.org/10.1016/0043-1648(70)90102-X
  19. R. S. Bauer, Epoxy Resins Chemistry, American Chemical Society, Washington DC, 1979
  20. C. A. May. Epoxy Resins, Marcel Pekker, New York, 1988
  21. S. Kumar, H. Doshi, M. Srinivasarao, J. O. Park, and D. A. Schiraldi, Polymer., 43, 1701 (2002) https://doi.org/10.1016/S0032-3861(01)00744-3
  22. W. Liu, S. V. Hoa, and M. Pugh, Compos. Sci. Technol., 65, 307 (2005) https://doi.org/10.1016/j.compscitech.2004.07.012
  23. R. J. Mathisen, J. K. Yoo, and C. S. P. Sung, Macromolecules, 20, 1414 (1987) https://doi.org/10.1021/ma00172a043
  24. S. J. Park and B. R. Jun, J. Colloid Interf. Sci., 284, 204 (2005) https://doi.org/10.1016/j.jcis.2004.09.074
  25. S. J. Park, D. I. Seo, J. R. Lee, and D. S. Kim, Polymer(Korea), 25, 587 (2001)
  26. S. J. Park and Y. S. Jang, J. Colloid lnterf. Sci., 263, 170 (2003) https://doi.org/10.1016/S0021-9797(03)00290-X
  27. K. Friedrich, Friction and Wear of Polymer Composites, Elsevier, New York, 1986
  28. H. C. Sin, N. Saka, and N. P. Suh, Wear, 55, 163 (1979) https://doi.org/10.1016/0043-1648(79)90188-1
  29. L. Gmbel, Friction and Lubrication in Mechanical Engineering, Krayn, Berlin, 1925