The Effect of Crosslinking on the Actuation of Electroactive IPMC Prepared with Fluoroalkyl Methacrylate/Acrylic Acid/HEMA Copolymer

Fluoroalkyl Methacrylate/Acrylic Acid/2-HEMA 공중합체로 제조한 IPMC의 구동 특성에 미치는 가교의 영향

  • Published : 2005.09.01

Abstract

In order to enhance the actuation force of ionic polymer-metal composite (IPMC) made with the acrylic copolymer of fluoroalkyl methacryate, acrylic acie, and 2-hydroxyethyl methacrylate(HEMA), the hydroxy group of HEMA was corsslinked with 1,3-diethoxy-1,1,3,3-tetramethyldisiloxane. The water uptake was reduced and the mechanical strengths and the actuation force of the membrane was improved by crosslinking. However, current and deformation responses of IPMC were decreased by crosslinking.

Fluoroalkyl methacrylate, 아크릴산, 2-hydroxyethyl methacrylate(HEMA)를 공중합한 불소화 아크릴계 이온성 고분자로 제조한 이온성 고분자-백금 복합재료(IPMC)의 구동력을 증대시키기 위하여, HEMA의 OH기를 1,3-diethoxy-1,1,3,3-tetramethyldisiloxane으로 가교하였다. 가교반응에 의하여 IPMC의 수분흡수가 감소하면서, 기계적 강도, 구동력이 증가함을 관찰하였다. 그러나 IPMC의 구동성, 즉 외부 전위에 의한 변위와 전류량은 가교에 의해 감소하였다.

Keywords

References

  1. Y. Bar-Cohen(Editor), Electroactive Polymer(EAP) Actuators as Artificial Muscles, SPIE Press, Washington, 2001
  2. J. H. Lee, D. S. Lee, H. K. Kim, Y. K. Lee, H. R. Choi, H. M. Kim, J. W. Jeon, Y. S. Tak, and J.-D. Nam, Polymer(Korea), 26, 105 (2002)
  3. M. Shahinpoor, Y. Bar-Cohen, J. O. Simpson, and J. Smith, Smart Mater. Struct., 7, R15 (1998) https://doi.org/10.1088/0964-1726/7/6/001
  4. S. Nemat-Nasser and J. Y. Li, J. Appl. Phys., 87, 3321 (2000) https://doi.org/10.1063/1.372343
  5. M. Shahinpoor and K. J. Kim, Smart Mater. Struct., 10, 819 (2001) https://doi.org/10.1088/0964-1726/10/4/327
  6. C. Heitner-Wirguin, J. Membr. Sci., 120, 1 (1996) https://doi.org/10.1016/0376-7388(96)00155-X
  7. J. Y. Li and S. Nemat-Nasser, Meehan. Mater., 32, 303 (2000) https://doi.org/10.1016/S0167-6636(00)00002-8
  8. K. Asaka, K. Oguro, Y. Nishimura, M. Mizuhata, and H. Takenaka, Polym. J., 27, 436 (1995) https://doi.org/10.1295/polymj.27.436
  9. Y. Abe, A. Mochizuki, T. Kawashima, S. Yamashita, K. Asaka, and K. Oguro, Polym. Adv. Technol., 9, 520 (1998) https://doi.org/10.1002/(SICI)1099-1581(199808)9:8<520::AID-PAT791>3.0.CO;2-G
  10. K. Oguro, N. Fujiwara, K. Asaka, K. Onishi, and S. Sewa, Proc. SPIE-Int. Soc. Opt. Eng., 3669(Electroactive Polymer Actuator and Devices), 64 (1999)
  11. K. J. Kim and M. Shahinpoor, Proc. SPIE-Int. Soc. Opt. Eng., 4329(Electroactive Polymer Actuator and Devices), 189 (2001)
  12. K. J. Kim and M. Shahinpoor, Polymer, 43, 797 (2002) https://doi.org/10.1016/S0032-3861(01)00648-6
  13. H. M. Jeong, S. M. Woo, H. S. Kim, B. K. Kim, J. H. Bang, S. Lee, and M. S. Mun, Macromol. Res., 12, 593 (2004) https://doi.org/10.1007/BF03218449
  14. H. M. Jeong, S. M. Woo, S. Lee, G.-C. Cha, and M. S. Mun, J. Appl. Polym. Sci., in press
  15. C. B. Mallon, United States Patent 4,408,072 (1984)
  16. T. Rashid and M. Shahinpoor, Proc. SPIE-Int. Soc. Opt. Eng., 3669(Electroactive Polymer Actuator and Devices), 289 (1999)