1,3-Butadiene diepoxide에 의해 가교된 히아루론산 비드의 제조 및 특성

Synthesis and Characteristics of Hyaluronic Acid Bead Crosslinked by 1,3-Butadiene diepoxide

  • 권지영 (한남대학교 나노생명화학공학과) ;
  • 정성일 (한남대학교 나노생명화학공학과)
  • Kwon, Ji-Young (Department of Chemical Engineering and Nano-Bio Technology, Hannam University) ;
  • Cheong, Seong-Ihl (Department of Chemical Engineering and Nano-Bio Technology, Hannam University)
  • 발행 : 2005.09.01

초록

인체 보형물의 생체 재료로 사용할 목적으로 히아루론산 비드를 제조하였다. 히아루론산 수용액과 콩기름을 섞어서 얻어진 현탁상태에서 히아루론산을 1,3-butadiene diepoxide로 가교시켰다. 제조된 비드의 물성을 살펴보기 위해 직경, 표면적과 팽윤도를 측정하였고 전자현미경으로 표면상태를 관찰하였다. 가교제의 농도가 $5-12\;vol\%$ 범위에서 비드가 형성되었으며 제조된 비드는 단순분산성을 보였다. 히아루론산 농도 혹은 가교제 농도가 증가할수록, 가교 온도가 감소할수록, BET표면적과 팽윤도가 감소하였다. 혼합속도의 변화에 의해 비드의 물성은 거의 변하지 않았으나 비드의 크기는 효과적으로 조절되었다.

Hyaluronic acid-based beads were prepared in order to develop a biomedical material for augumentation. Hyaluronic acid was crosslinked by 1,3-butadiene diepoxide in a suspension state maintained by rapid mixing of soybeen oil and hyaluronic acid solution. The particle size, surface area and swelling ratio were measured to investigate the physical properties of the synthesized beads and the bead surface was examined by scanning electron microscopy. The beads were formed in the range of $5-12vol\%$ concentration of crosslinking agent, which showed monodisperse size distribution. Both BET surface area and swelling ratio decreased as the concentration of either hyaluronic acid or crosslinking agent increased, and crosslinking temperature decreased. Bead size could be effectively controlled by mixing speed without affecting other physical property.

키워드

참고문헌

  1. O. Wichterle and D. Lim, Nature, 185,117 (1960) https://doi.org/10.1038/185117a0
  2. N. A. Peppas, Hydrogels in Medicine and Pharmacy, Boca Raton, Vol. I, II, III, CRC Press Inc., Florida, 1986
  3. G. Khang, M. S. Kim, S. H. Cho, H. B. Lee, J. H. Chang, and K. J. Kim, Polym. Sci. and Tech., 14,431 (2003)
  4. F. Lim and A. M. Sun, Science, 210, 908 (1980) https://doi.org/10.1126/science.6776628
  5. G. Palmierie, P. Giardina, and B. Desiderio, Enzyme Microbiol. Biotechnol., 16,151 (1994) https://doi.org/10.1016/0141-0229(94)90078-7
  6. E. Akertek and L. Tarhan, Appl. Biochem. Technol., 50, 291 (1995) https://doi.org/10.1007/BF02788099
  7. S. Declerck, D. Strullu, and C. Plenchette, J. Biotechnol., 48, 51 (1996) https://doi.org/10.1016/0168-1656(96)01396-X
  8. H. Clayton, R. James, and N. London, Acta. Diabetol., 30, 181 (1993) https://doi.org/10.1007/BF00569928
  9. W. S. W. Ngah, C. S. Endud, and R. Mayanar, Reactive & Functional Polymers, 50, 181 (2002) https://doi.org/10.1016/S1381-5148(01)00113-4
  10. M. Chiou and H. Li, J. Hazardous Materials, B93, 233 (2002)
  11. Y. Tokita and A. Pkamoto, Eur. Polym. J., 32, 1011 (1996) https://doi.org/10.1016/0014-3057(96)00019-5
  12. S. P. Zhong, D. Campoccia, P. J. Doherty, R. L. Benedetti, and D. F. Williams, Biomaterials, 15, 359 (1994) https://doi.org/10.1016/0142-9612(94)90248-8
  13. G. D. Prestwiteh, D. M. Marecak, and J. F. Marecek, J. Control. Release, 53, 93 (1998) https://doi.org/10.1016/S0168-3659(97)00242-3
  14. Y. Luo, K. R. Kirker, and G. D. Prestwich, J. Control. Release, 69, 169 (2000) https://doi.org/10.1016/S0168-3659(00)00300-X
  15. S. Park, J. Park, H. O. Kim, M. J. Song, and H. Suh, Biomaterials, 22, 1205 (2002)
  16. S. Park, H. J. Lee, K. H. Lee, and H. Suh, Biomaterials, 24,1631 (2003) https://doi.org/10.1016/S0142-9612(02)00550-1
  17. H. S. Nam, J. H. Kim, J. H. An, and D. J. Chung, Polymer(Korea), 25, 476 (2001)
  18. P. A. Delco, M. Stefanetti, D. Pressato, S. Piana, M. Dona, and A. Pavesio, Fertil. Steril., 69, 318 (1998) https://doi.org/10.1016/S0015-0282(98)00496-8
  19. J. A. Hunt, H. N. Joshi, V. J. Stella, and E. M. Topp, J. Control. Release, 12, 159 (1990) https://doi.org/10.1016/0168-3659(90)90092-8
  20. L. Benedetti, R. Cortivo, T. Berti, A. Berti, F. Pea, M. Marzzo, M. Moras, and G. Abatangelo, Biomaterials, 14, 1154 (1993) https://doi.org/10.1016/0142-9612(93)90160-4
  21. J. Aigner, J. Tegeler, P. Hutzler, D. Campoccia, A. Pavesio, and C. Hammer, J. Biomed. Mater. Res., 42, 172 (1998) https://doi.org/10.1002/(SICI)1097-4636(199811)42:2<172::AID-JBM2>3.0.CO;2-M
  22. C. Ouwerx, N. Velings, M. M. Mestdagh, and M. A. V. Axelos, Polymer Gels and Networks, 6, 393 (1998) https://doi.org/10.1016/S0966-7822(98)00035-5
  23. L. Zhang, G. Cheng, and C. Fu, Reactive & Functional Polymers, 56,167 (2003) https://doi.org/10.1016/S1381-5148(03)00054-3
  24. T. Murakata, H. Honma, S. Nakazato, and Kuroda, J. Chem Eng. Japan, 34, 299 (2001) https://doi.org/10.1252/jcej.34.1
  25. K. A. Gomez and A. A. Gomez, Statistical Procedures for Agricultural Research, 2nd ed., John Wiely and Sons, New York, 1984
  26. F. Rodriguez, Principles of Polymer Systems, 3rd ed, Hemisphere Publishing Co., New York, 1989