Resonance Frequency and Quality Factor Tuning in Electrostatic Actuation of Nanoelectromechanical Systems

  • Kim, Dong-Hwan (School of Mechanical Design and Automation Engineering, Institute of Precision Machinery Technology, Seoul National University of Technology)
  • 발행 : 2005.09.01

초록

In an electro statically actuated nanoelectromechanical system (NEMS) resonator, it is shown that both the resonance frequency and the resonance quality (Q) factor can be manipulated. How much the frequency and quality factor can be tuned by excitation voltage and resistance on a doubly-clamped beam resonator is addressed. A mathematical model for investigating the tuning effects is presented. All results are shown based on the feasible dimension of the nanoresonator and appropriate external driving voltage, yielding up to 20 MHz resonance frequency. Such parameter tuning could prove to be a very convenient scheme to actively control the response of NEMS for a variety of applications.

키워드

참고문헌

  1. Carr, D. W. and Craighead, H. G., 1997, 'Fabrication of Nanoelectromechanical Systems in Single Crystal Silicon Using Silicon on Insulator Substrates and electron Beam Lithography,' Journal of Vacuum Science Technology, B 15, No. 6, pp. 2760-2763 https://doi.org/10.1116/1.589722
  2. Carr, D. W., Evoy, S., Sekaric, L., Craighead, H. G. and Parpia, J. M., 2000, 'Parametric Amplification in a Torsional Microresonator,' Applied Physics Letters, Vol. 77, No. 10, pp. 1545-1547 https://doi.org/10.1063/1.1308270
  3. Cleland, A. N. and Roukes, M. L., 2002, 'Noise Processes in Nanomechanical Resonators,' Journal of Applied Physics, 92, No. 5, pp.2758-2761 https://doi.org/10.1063/1.1499745
  4. Cleland, A., 2003, Foundations of Nanomechanics from Solid-State Theory to Device Applications, Springer
  5. Kim, D. H., Kim, B. K. and Park, J.O., 2004, 'Implementation of a Piezoresistive MEMS Cantilever for Nanoscale Force Measurement in Micro/Nano Robotic Applications,' KSME International Journal, Vol. 18, No. 5, pp. 789-797
  6. Kouh, T., Karabacak, D., Kim, D. H. and Ekinci, K. L., 2004, 'Ultimate Limits to Optical Displacement Detection in Nanoelectromechanical Systems,' NSTI-Nanotech 2004, Boston, MA, Vol. 3, pp. 1-4
  7. Petitgrand, S., Courbet, B. and Bosseboeuf, A., 2003, 'Characterization of Static and Dynamic Optical Actuation of Al Microbeams by Microscopic Interferometry Techniques,' Journal of Micromechanics and Microengineering, Vol. 13, S113-S118 https://doi.org/10.1088/0960-1317/13/4/319
  8. Pourkamali, S., Hashimura, A., Abdolvand, R., Ho, G. K., Erbil, A. and Ayazi, F., 2003, 'High-Q Single Crystal Silicon HARPSS Capacitive Beam Resonators with Self-Aligned Sub-10-nm Transduction Gaps,' Journal of Microelectromechanical Systems, Vol. 12, No. 4, pp. 487-496 https://doi.org/10.1109/JMEMS.2003.811726
  9. Rugar, D. and Grutter, P., 1991, 'Mechanical Parametric Amplication and Thermomechancial Noise Squeezing,' Physical Review Letters, Vol. 67, No. 6, pp. 699-702 https://doi.org/10.1103/PhysRevLett.67.699
  10. Sekaric, L., Carr, D. W., Evoy, S., Parpi, J. M. and Craighead, H. G., 2002a, 'Nanomechanical Resonant Structures in Silicon Nitride: Fabrication, Operation and Dissipation Issues,' Sensors and Actuators A 101, pp. 2l5-2l9 https://doi.org/10.1016/S0924-4247(02)00149-8
  11. Sekaric, L., Parpi, J. M., Craighead, H. G., Feygelson, T., Houston, B. H. and Butler, J. E., 2002b, 'Nanomechanical Resonant Structures in Nanocrystalline Diamond,' Applied Physics Letters, Vol. 81, No. 23, pp.4455-4457 https://doi.org/10.1063/1.1526941
  12. Vogel, M., Mooser, C., Karrai, K. and Warburton, R. J., 2003, 'Optically Tunable Mechanics Microlevers,' Applied Physics Letters, Vol. 83, No. 7, pp. 1337-1339 https://doi.org/10.1063/1.1600513
  13. Yang, Y. T., Ekinci, K. L., Huang, X. M. H., Schiavone, L. M., Roukes, M. L., Zorman, C. A. and Mehregany, M., 2001, 'Monocrystalline Silicon Carbide Nanoelectromechanical Systems,' Applied Physics Letters, Vol. 78, No. 2, pp. 162-164 https://doi.org/10.1063/1.1338959