Solving Nonlinear Fixed Charge Transportation Problem by Spanning Tree-based Genetic Algorithm

신장트리 기반 유전자 알고리즘에 의한 비선형 fcTP 해법

  • 조정복 (동서대학교 컴퓨터정보공학부) ;
  • 고석범 (부경대학교 전자계산학과) ;
  • Published : 2005.08.01

Abstract

The transportation problem (TP) is known as one of the important problems in Industrial Engineering and Operational Research (IE/OR) and computer science. When the problem is associated with additional fixed cost for establishing the facilities or fulfilling the demand of customers, then it is called fixed charge transportation problem (fcTP). This problem is one of NP-hard problems which is difficult to solve it by traditional methods. This paper aims to show the application of spanning-tree based Genetic Algorithm (GA)approach for solving nonlinear fixed charge transportation problem. Our new idea lies on the GA representation that includes the feasibility criteria and repairing procedure for the chromosome. Several numerical experimental results are presented to show the effectiveness of the proposed method.

수송문제는 산업공학 및 OR 그리고 전자계산학 분야에서 중요한 문제 중의 하나로 인식된다. 수송 문제가 시설을 수립하거나 고객들의 요구를 이행하기 위한 추가적인 고정 비용과 연관될 때, fcTP(fixed charge Transportation Problem)라 한다. fcTP는 이전의 고전적인 방법으로 해결하기 어려운 NP-hard 문제들 중의 하나이다. 본 논문에서는 비선형 fcTP를 해결하기 위한 신장트리 기반 유전자알고리즘을 제안한다. 특히, 염색체(chromosome)에 대한 feasibility criteria와 repairing procedure를 포함하는 GA 염색체 표현에 대해 새로운 아이디어를 제안한다. 또한, 본 논문에서 제안하는 방법의 효율성을 입증하기 위한 여러 가지 수치 실험 결과를 기술한다.

Keywords

References

  1. Gen, M. and R. Cheng. Genetic Algorithms and Engineering Design, John Wiley & Sons, NY, 1997
  2. Gen, M. and R. Cheng, Genetic Algorithms and Engineering Optimization, John Wiley & Sons, New York, 2000
  3. Tilanus, B. ed., Information Systems in Logistics and Transportation, Pergamon, 1997
  4. Hitchcock, F. L., The Distribution of a Product from Several Sources to Numerous Localities, Journal of Mathematical Physic, Vol. 20. pp. 224-230, 1941 https://doi.org/10.1002/sapm1941201224
  5. Hirsch, W.M. and G.B. Dantzig, The Fixed Charge Problem, Naval Research Logistics Quarterly, Vol. 15, pp. 413-424, 1968 https://doi.org/10.1002/nav.3800150306
  6. Steinberg, D.I., The Fixed Charge Problem, Naval Research Logistics Quarterly, Vol. 17, No.2, pp. 217-236, 1970 https://doi.org/10.1002/nav.3800170209
  7. Gottlieb, J. and L. Paulmann, Genetic Algorithms for the Fixed Charge Transportation Problem, Proc. of IEEE International Conference on Evolutionary Computation, pp. 330-335, Anchorage, 1998 https://doi.org/10.1109/ICEC.1998.699754
  8. Sun, M., J.E. Aronson, P.G. Mckeown, and D. Drinka, A Tabu Search Heuristic Procedure for the Fixed Charge Transportation Problem, European J. of Operational Research, Vol. 106, No. 1-2, pp. 441-456, 1998 https://doi.org/10.1016/S0377-2217(97)00284-1
  9. Chien, T.W., 'Determining profit-maximizing production / shipping policies in a one-to-one direct shipping stochastic environment,' European J. of Operational Research, Vol. 64, pp. 83-102, 1993 https://doi.org/10.1016/0377-2217(93)90010-K
  10. Holland, J. H.: Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, 1975
  11. Gen, M. & A. Syarif: Multi-stage supply chain network by hybrid genetic algorithms with fuzzy logic controller, pp. 181-196, in Jose Luis Verdegay ed.: Fuzzy Sets based Heuristics for Optimization, Springer Verlag, New York, 2003
  12. Zhou, G and M. Gen, 'A Genetic Algorithm Approach on Tree-like Telecommunication Network Design Problem,' The Journal of the Operational Research Society, Vol.54, No.3, pp.248-254, 2003 https://doi.org/10.1057/palgrave.jors.2601510
  13. Zhou, G., Hokay Min, & M. Gen: A genetic algorithm approach to the bi-criteria allocation of customers to warehouses, International J. of Production Economics, Vol. 86, pp. 35-45, 2003 https://doi.org/10.1016/S0925-5273(03)00007-0
  14. Li, Y.Z. and M. Gen, 'Spanning Tree-Based Genetic Algorithm for Bicriteria Transportation Problem with Fuzzy Coefficients,' Australian Journal of Intelligent and Information Processing Systems, Vol.4, No. 3-4, pp. 220-229, Spring / Summer 1997
  15. Li, Y., M. Gen and K. Ida, 'Genetic Algorithms for the Fixed Charge Transportation Problem,' Beijing Mathematics, Vol. 4, No.2, pp. 239-249, 1998
  16. Michalewicz, Z.: Genetic Algorithms + Data Structures= Evolution Programs. Springer-Verlag. 3rdRev. Ex. Ed., 1996
  17. Admi Syarif, Y. Yun, and Mitsuo Gen. Study on Multi-Stage Logistics Chain Network: A Spanning Tree Based Genetic Algorithm. Computer and Industrial Engineering, Vol. 43, No. 1-2. pp. 299-314. 2002 https://doi.org/10.1016/S0360-8352(02)00076-1
  18. Admi Syarif and Mitsuo Gen, Solving Exclusionary Side Constrained Transportation Problem by Using A Hybrid Spanning Tree-based Genetic Algorithm, International Journal of Intelligent Manufacturing, Vol. 14, No. 3-4, pp. 389-399, 2003 https://doi.org/10.1023/A:1024610128238
  19. Gen, M., and Li, Y., 'Solving Multi-Objective Transportation Problem by Spanning Tree-Based Genetic Algorithm,' (I. Parmee, ed.) Adaptive Computing in Design and Manufacture, pp, 95-108, Springer-Verlag, 1998
  20. Admi Syarif and Mitsuo Gen, Double Spanning Tree-Based Genetic Algorithm for Two Stage Transportation Problem, International Journal of Knowledge-based Engineering Systems. Vol. 7. No.4. pp. 214-221. 2003