Integration of immunohistochemical reactions into Electrochemical and Optical Analyses of Biochips

면역 조직화학 반응이 통합된 바이오칩의 전기화학 및 광학적 분석

  • Choi Hyoung Gil (Department of Biotechnology, Ajou University) ;
  • Hong Eun Kyoung (Department of Anatomy, Chonnam National University Medical School) ;
  • Lee Seung-Won (Department of Anatomy, Chonnam National University Medical School) ;
  • Yoon Hyun C. (Department of Biotechnology, Ajou University)
  • 최형길 (아주대학교 생명공학과) ;
  • 홍은경 (전남대학교 의과대학 해부학교실) ;
  • 이승원 (전남대학교 의과대학 해부학교실) ;
  • 윤현철 (아주대학교 생명공학과)
  • Published : 2005.04.01

Abstract

We have addressed two important issues of immunosensing biochips, including the construction of antibody functionalized suface for efficient affinity reactions and the development of a signal registration strategy that converts biospecific reactions into highly quantifiable electrochemical and/or optical signals. The developed immunoassay reaction is an integrated version of enzyme-mediated immunoprecipitaion reaction, which is widely used in immunohistochemistry, and electrochemical signaling reaction. For the evaluation of analytical performance of fabricated immunosensing biochips, signaling for mouse IgG in antiserum was conducted. Applications of the developed strategy have been found for the evaluation of histology chemicals and for the signal amplification for array-type biochip analysis.

효율적인 바이오칩을 개발을 위해 칩 표면에 생체 물질들의 상호반응이 효과적으로 일어날 수 있는 센싱 표면의 조성과 항원-항체 반응과 같은 생체인식 반응을 정량적 신호로 전환하는 방법에 대해 연구하였다. 전기화학식 센서의 표면을 개선하기 위해 폴리아미도아민 덴드리머를 가교 물질로 도입하였다. 생체 분자들의 인식작용을 정량적인 신호로 전환하기 위해 전형적인 면역조직화학분석에서 사용된 반응들을 바이오센서에 적용한 방법론을 사용하였다 효소에 의해 촉매되는 신호화 방법은 면역반응들에 대하여 광학식 센서와 전기화학식 센서에서 공히 수행되었으며, 매우 정량적인 신호로 측정되었다. 측정된 신호들로부터 단백질 농도에 비례하는 검량곡선을 획득할 수 있었으며 다양한 면역 샘플에 대한 적용 가능성을 제시하였다.

Keywords

References

  1. Pemberton, R. M., J. P. Hart, and T. T. Mottram (2001), An electrochemical immunosensor for milk progesterone using a continuous flow system, Biosens. Bioelectron. 16,715-723 https://doi.org/10.1016/S0956-5663(01)00212-3
  2. Yoon, H. C, H. S. Yang, and S. Y. Byun (2004), Ferritin immunosensing on microfabricated electrodes based on the integration of immunoprecipitation and electrochemical signaling reactions, Anal.Sci. 20, 1249-1253 https://doi.org/10.2116/analsci.20.1249
  3. Lee, W., B. S. Chun, B. K. Oh, W. H. Lee, and J. W. Choi (2004), Fabrication of protein A-Viologen hetero Langmuir-Blodgett fum for fluorescence immunoassay, Biotechnol. Bioprocess Eng. 9, 241-244 https://doi.org/10.1007/BF02942337
  4. Kobori, A., S. Horie, H. Suda, I. Saito, and K. Nakatani (2004), The SPR Sensor Detecting Cytosine-Cytosine Mismatches, J. Am.Chem. Soc. 126, 557-562 https://doi.org/10.1021/ja037947w
  5. Pyo H. B., , Y. B. Shin, M. G. Kim, and H. C. Yoon (2004), Multichannel surface plasmon resonance imaging and analysis of micropatterned self-assembled monolayers and protein affinity interactions, Langmuir. 21, 166-171 https://doi.org/10.1021/la0486382
  6. Kim, N. S., I. S. Park, and D. K. Kim (2004), Characteristics of a label-free piezoelectric immunosensor detecting Pseudomonas aeruginosa, Biosens. Bioelectron. 18, 797-804 https://doi.org/10.1016/S0956-5663(03)00048-4
  7. Kim, U. R. (2003), The theory and application of piezoelectric quartz crystal microbalance(PZ QCM), Korean J. Biotechnol.Bioeng. 18, 79-89
  8. Yoon, H. C., J. S. Ko, H. S. Yang, H. B. Pyo, K. H. Chung, S. J. Kim, and Y. T. Kim (2003), A polymer-based microfluidic device for immunosensing biochips, Lab on a Chip. 3, 106-113 https://doi.org/10.1039/b301794j
  9. McDonald, J. C., D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides (2000), Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis. 21,27-40 https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C
  10. Liu, Y., C. D. Gasrcia, and C. S. Henry (2003), Recent progress in the development of $\mu$-TAS for clinical analysis, Analyst. 128, 1002-1008 https://doi.org/10.1039/b306278n
  11. Wang, J. (1998), DNA biosensors based on peptide nucleic acid (PNA) recognition layer, Biosens. Bioelectron. 13, 757-762 https://doi.org/10.1016/S0956-5663(98)00039-6
  12. Miyachi, H., A. Hiratsuka, K. Ikebukuro, K. Yano, H. Mugururna, and I. Karube (2000), Application of polymer-embedded proteins to fabrication of DNA array, Biotechnol. Bioeng. 69, 323-329 https://doi.org/10.1002/1097-0290(20000805)69:3<323::AID-BIT10>3.0.CO;2-T
  13. Anzai, J. I., Y. Kobayashi, N. Nakamura, M. Nishimura, and T. Hoshi (1999), Layer-by-Iayer construction of multilayer thin films composed of avidin and biotin-labeled poly(amine)s, Langmuir. 15,221-226 https://doi.org/10.1021/la980743m
  14. Liu, Z., and M. D. Amiridis (2004), FT-IRRAS spectroscopic studies of the interaction of avidin with biotinylated dendrimer surfaces, Colloids Surf. B: Biointerfaces 35, 197-203 https://doi.org/10.1016/j.colsurfb.2004.03.009
  15. Hong, M. Y., H. C. Yoon, and H. S. Kim (2003), Protein-ligand interactions at the PAMAM dendrimers monolayers on gold, Langmuir. 19, 416-421 https://doi.org/10.1021/la020431q
  16. Yoon, H. C., M. Y. Hong, and H. S. Kim (2000), Affinity biosensor for avidin using a double functionalized dendrimer monolayer on a gold electrode, Anal. Biochem. 282, 121-128 https://doi.org/10.1006/abio.2000.4608
  17. Wordinger, R., G. Miller, and D. Nicodemus (1987), Manual of immunoperoxidase techniques., p23-43, American Soc. Clin. Patho!. Press, Chicago
  18. Yoon, H. C., H. S. Yang, and Y. T. Kim (2002), Biocatalytic precipitation induced by an affinity reaction on dendrimer-activated surfaces for the electrochemical signaling form immunosensors, Analyst. 127, 1082-1087 https://doi.org/10.1039/b203299f
  19. Vlies, D., K. W. A. Wirtz, and E. H. W. Pap (2001), Detection of protein oxidation in Rat-1 fibroblasts by fluorescently labeled tyramide, Biochemistry. 40, 7783-7788 https://doi.org/10.1021/bi002795s
  20. Wang, G., C. L. Achim, R. L. Hamilton, C. A. Wilry, and V. Soontornniyomkij (1999), Tyramide signal amplification method in multiple-label immunofluorescence confocal microscopy, Methods. 18, 459-464 https://doi.org/10.1006/meth.1999.0813