Enhancement of Analyte Ionization in Desoprtion/Ionization on Porous Silicon (DIOS)-Mass Spectrometry(MS)

  • Lee Chang-Soo (Department of Chemical Engineering, Chungnam National University) ;
  • Kim Eun-Mi (School of Chemical Engineering and Institute of Molecular Biology and Genetics, Seoul National University) ;
  • Lee Sang-Ho (School of Electrical Engineering and Computer Science, Seoul National University) ;
  • KIm Min-Soo (School of Electrical Engineering and Computer Science, Seoul National University) ;
  • Kim Yong-Kweon (School of Electrical Engineering and Computer Science, Seoul National University) ;
  • Kim Byug-Gee (School of Chemical Engineering and Institute of Molecular Biology and Genetics, Seoul National University)
  • 발행 : 2005.06.01

초록

Desorption/ionization on silicon mass spectrometry (DIOS-MS) is a relatively new laser desorption/ionization technique for mass spectrometry without employing an organic matrix. This present study was carried to survey the experimental factors to improve the efficiency of DIOS-MS through electrochemical etching condition in structure and morphological properties of the porous silicon. The porous structure of silicon structure and its properties are crucial for the better performance of DIOS-MS and they can be controlled by the suitable selection of electrochemical conditions. The fabrication of porous silicon and ion signals on DIOS-MS were examined as a function of silicon orientation, etching time, etchant, current flux, irradiation, pore size, and pore depth. We have also examined the effect of pre- and post-etching conditions for their effect on DIOS-MS. Finally, we could optimize the electrochemical conditions for the efficient performance of DIOS-MS in the analysis of small molecule such as amino acid, drug and peptides without any unknown noise or fragmentation.

키워드

참고문헌

  1. Cullis, A. G., L. T. Canham, and P. D. J. Calcott (1997) The structural and luminescence properties of porous silicon. J. Appl. Physics 82: 909-965 https://doi.org/10.1063/1.366536
  2. Brus, L. (1994) Luminescence of silicon materials-chains, sheets, nanocrystals, nanowires, microcrystals, and porous silicon. J. Phys. Chem. 98: 3575-3581 https://doi.org/10.1021/j100065a007
  3. Sailor, M. J. and E. J. Lee (1997) Surface chemistry of luminescent silicon nanocrystallites. Adv. Materials 9: 783-& https://doi.org/10.1002/adma.19970091004
  4. Lin, V. S. Y., K. Motesharei, K. P. S. Dancil, M. J. Sailor, and M. R. Ghadiri (1997) A porous silicon-based optical interferometric biosensor. Science 278: 840-843 https://doi.org/10.1126/science.278.5339.840
  5. Wei, J., J. M. Buriak, and G. Siuzdak (1999) Desorptionionization mass spectrometry on porous silicon. Nature 399: 243-246 https://doi.org/10.1038/20400
  6. Tuomikoski, S., K. Huikko, K. Grigoras, P. Ostman, R. Kostiainen, M. Baumann, J. Abian, T. Kotiaho, and S. Franssila (2002) Preparation of porous n-type silicon sample plates for desorption/ionization on silicon mass spectrometry (DIOS-MS). Lab on a Chip 2: 247-253 https://doi.org/10.1039/b207634a
  7. Go, E. P., J. E. Prenni, J. Wei, A. Jones, S. C. Hall, H. E. Witkowska, Z. X. Shen, and G. Siuzdak (2003) Desorption/ ionization on silicon time-of-flight/time-of-flight mass spectrometry. Anal. Chem. 75: 2504-2506 https://doi.org/10.1021/ac026253n
  8. Cohen, S. L. and B. T. Chait (1996) Influence of matrix solution conditions on the MALDI-MS analysis of peptides and proteins. Anal. Chem. 68: 31-37 https://doi.org/10.1021/ac9507956
  9. Westman, A., T. Huthfehre, P. Demirev, and B. U. R. Sundqvist (1995) Sample morphology effects in matrixassisted laser-desorption ionization mass-spectrometry of proteins. J. Mass Spectrometry 30: 206-211 https://doi.org/10.1002/jms.1190300131
  10. Garden, R. W. and J. V. Sweedler (2000) Heterogeneity within MALDI samples as revealed by mass spectrometric imaging. Anal. Chem. 72: 30-36 https://doi.org/10.1021/ac9908997
  11. Stewart, M. P. and J. M. Buriak (2000) Chemical and biological applications of porous silicon technology. Adv. Materials 12: 859-869 https://doi.org/10.1002/1521-4095(200006)12:12<859::AID-ADMA859>3.0.CO;2-0
  12. Shen, Z. X., J. J. Thomas, C. Averbuj, K. M. Broo, M. Engelhard, J. E. Crowell, M. G. Finn, and G. Siuzdak (2001) Porous silicon as a versatile platform for laser desorption/ ionization mass spectrometry. Anal. Chem. 73: 612-619 https://doi.org/10.1021/ac000746f
  13. Lee, J. Y., J. J. Kim, and T. H. Park (2003) Miniaturization of polymerase chain reaction. Biotechnol. Bioprocess Eng. 8: 213-220 https://doi.org/10.1007/BF02942268
  14. Li, C., W. C. Lee, and K. H. Lee (2003) Affinity separations using microfabricated microfluidic devices: In situ photopolymerization and use in protein separations. Biotechnol. Bioprocess Eng. 8: 240-245 https://doi.org/10.1007/BF02942272
  15. Park, S. S., H. S. Joo, S. I. Cho, M. S. Kim, Y. K. Kim, and B. G. Kim (2003) Multi-step reactions on microchip platform using nitrocellulose membrane reactor. Biotechnol. Bioprocess Eng. 8: 257-262 https://doi.org/10.1007/BF02942275
  16. Cuiffi, J. D., D. J. Hayes, S. J. Fonash, K. N. Brown, and A. D. Jones (2001) Desorption-ionization mass spectrometry using deposited nanostructured silicon films. Anal. Chem. 73: 1292-1295 https://doi.org/10.1021/ac001081k
  17. Christophersen, M., J. Cartensen, and H. Foll (2000) Macropore formation on highly doped n-type silicon. Physica Status Solidia Applied Research 182: 45-50 https://doi.org/10.1002/1521-396X(200011)182:1<45::AID-PSSA45>3.0.CO;2-6