Magnetic field effects of silicon melt motion in Czochralski crystal puller

초크랄스키 단결정 장치내 실리콘 용융액 운동의 자기장효과

  • Lee, Jae-Hee (College of General Education, Kyungil University)
  • Published : 2005.08.01

Abstract

A numerical analysis was performed on magnetic field effects of silicon melt motion in Czochralski crystal puller. The turbulent modeling was used to simulate the transport phenomena in 18' single crystal growing process. For small crucible angular velocity, the natural convection is dominant. As the crucible angular velocity is increased, the forced convection is increased and the distribution of temperature profiles is broadened. The cusp magnetic field reduces effectively the natural and forced convection near the crucible and the temperature profiles of the silicon fluids is similar in the case of conduction.

초크랄스키 단결정장치내 실리콘 유동의 자기장효과에 대한 수치해석을 하였다. 8" 단결정 성장과정에서 난류 모형을 사용하여 수송현상을 계산하였다. 도가니 회전수가 작으면 자연대류가 지배적이었다. 도가니 회전수가 증가할수록 강제대류가 증가되며 온도 분포는 더 넓어진다. cusp 자기장을 인가하면 도가니근처의 유동이 크게 감소하며 온도분포는 전도의 경우와 비슷해진다.

Keywords

References

  1. R.W. Series and D.T.J. Hurle, 'The use of magnetic fields in semiconductor crystal growth', J. Crystal Gowth 113 (1991) 305 https://doi.org/10.1016/0022-0248(91)90036-5
  2. O.S. Kerr and A.A. Wheeler, 'The effect of a magnetic field on the flux of a contaminant dissolving into the crucible wall boundary layer in czochralski crystal growth', J. Crystal Growth 96 (1989) 915 https://doi.org/10.1016/0022-0248(89)90652-0
  3. H. Hirata and K. Hoshikawa, 'Oxygen solubility and its temperature dependence in a silicon melt in equilibrium with solid silica', J. Crystal Growth 106 (1990) 657 https://doi.org/10.1016/0022-0248(90)90040-R
  4. S. Kobayashi, 'Numerical analysis of oxygen transport in magnetic czochralski growth of silicon', J. Crystal Growth 85 (1987) 69 https://doi.org/10.1016/0022-0248(87)90205-3
  5. N. Yamamoto, P.M. Petroff and J.R. Patel, 'Rod-like defects in oxygen rich czochralski grown silicon', J. Appl. Phys. 54 (1983) 3475
  6. T.W. Hicks, A.E. Organ and N. Riley, 'Oxygen transport in magnetic czochralski growth of silicon with a non-uniform magnetic field', J. Crystal Growth 94 (1989) 213
  7. H. Hirata and K. Hoshikawa, 'Three-dimensional numerical analyses of the effects of a cusp magnetic field on the flows, oxygen transport and heat transfer in a Czochralski silicon melt', J. Crystal Growth 125 (1992) 181
  8. K. Kakimoto, M. Watanabe, M. Eguchi and T. Hibiya, 'Ordered structure in non-axisymmetric flow of silicon melt convection', J. Crystal Growth 126 (1993) 435
  9. G.H. Geiger and D.R. Poirier, 'Transport phenomena in metallurgy' (Addison-Wesley Publishing Company, London, 1973) p.75
  10. W. Bardsley, D.T.J. Hurle and J.B. Mullin, 'Crystal growth: a tutorial approach' (North-Holland Publishing Company, New York, 1977) p.105
  11. S. Kobayashi, S. Miyahara, T. Fujiwara, T. Kubo and H. Fujiwara, 'Turbulent heat transfer through the melt in silicon czochralski growth', J. Crystal Growth 109 (1991) 149 https://doi.org/10.1016/0022-0248(91)90171-Z
  12. S.V. Patankar, 'Numerical heat transfer and fluid flow' (McGrow-Hill, New York, 1980) p.133
  13. J. Szekely, 'Fluid flow phenomena in metals processing' (Academic Press, New York, 1979) p.85
  14. J.-H. Lee and W.-S. Lee, 'Silicon melt motion in a czochralski crystal puller', J. Kor. Assoc. Crystal Growth 7 (1997) 27