Isolation of Candida albicans Chitin Synthase 1 Inhibitor from Streptomyces sp. A6705 and Its Characterization

  • KIM NA RAE (Laboratory of Cellular Function Modulator, Korea Research Institute of Bioscience and Biotechnology) ;
  • HWANG EUI IL (Bio Research Group, KT&G Central Research Institute) ;
  • YUN BONG SIK (Laboratory of Cellular Function Modulator, Korea Research Institute of Bioscience and Biotechnology) ;
  • LEE SANG HAN (Laboratory of Cellular Function Modulator, Korea Research Institute of Bioscience and Biotechnology) ;
  • MOON JAE SUN (Laboratory of Cellular Function Modulator, Korea Research Institute of Bioscience and Biotechnology) ;
  • LIM CHI HWAN (Department of Agricultural Chemistry, Graduate School, Chungnam National University) ;
  • LIM SE JIN (College of Pharmacy, Dongduk Women's University) ;
  • KIM SUNG UK (Laboratory of Cellular Function Modulator, Korea Research Institute of Bioscience and Biotechnology)
  • Published : 2005.08.01

Abstract

In the course of searching for potent chitin synthase 1 inhibitors from natural resources, Streptomyces sp. A6705 was found to exhibit potent inhibitory activity against the chitin synthase 1 from C. albicans (CaCHS1p). As a result, the inhibitor was isolated and identified using a series of chromatographies. Through chemical analyses with UV spectrophotometry, MS spectrometry, and various NMR techniques, the inhibitor was identified as N,N-bis(2-phenylethyl)urea. The compound exhibited strong inhibitory activity against the chitin synthase 1 from C. albicans with an $IC_{50}$ of 14 ${\mu}g$/ml, representing a similar inhibitory activity to that of the well-known chitin synthase inhibitor, polyoxin D ($IC_{50}$ 15 ${\mu}g$/ml). However, the compound showed no inhibitory activity against the chitin synthase 2 of Saccharomyces cerevisiae up to 280 ${\mu}g$/ml, which is structurally and functionally analogous to CaCHS 1 p. In addition, the compound exhibited weak antifungal activities against Cryptococcus neoformans and Rhizoctonis solani.

Keywords

References

  1. Sudoh, M., K. Tatsuno, N. Ono, A. Ohta, H. Chibana, H. Yamada-Okabe, and M. Arisawa. 1999. The Candida albicans CHS4 gene complements a Saccharomyces cerevisiae Skt5/ chs4 mutation and is involved in chitin biosynthesis. Microbiology 145: 1613-1622 https://doi.org/10.1099/13500872-145-7-1613
  2. Sudoh, M., T. Yamazaki, K. Masubuchi, M. Taniguchi, N. Shimma, M. Arisawa, and H. Yamada-Okabe. 2000. Identification of a novel inhibitor specific to the fungal chitin synthase. J. Biol. Chem. 275: 32901-32905 https://doi.org/10.1074/jbc.M003634200
  3. Chiou, C. C., A. H. Groll, and T. J. Walsh. 2000. New drugs and novel targets for treatment of invasive fungal infections in patients with cancer. Oncologist 5: 120-135 https://doi.org/10.1634/theoncologist.5-2-120
  4. Jiang, B., H. Bussey, and T. Roemer. 2002. Novel strategies in antifungal lead discovery. Curr. Opin. Microbiol. 5: 466-471 https://doi.org/10.1016/S1369-5274(02)00361-2
  5. Bulawa, C. E. 1993. Genetics and molecular biology of chitin synthesis in fungi. Annu. Rev. Microbiol. 47: 505-534 https://doi.org/10.1146/annurev.mi.47.100193.002445
  6. Au-Young, J. and P. W. Robbins. 1990. Isolation of a chitin synthetase gene (CHSl) from Candida albicans by expression in Saccharomyces cerevisiae. Mol. Microbiol. 4: 197-207 https://doi.org/10.1111/j.1365-2958.1990.tb00587.x
  7. Mio, T., T. Yabe, M. Sudoh, Y. Satoh, T. Nakajima, M. Arisawa, and H. Yamada-Okada. 1996. Role of three chitin synthase genes in the growth of Candida albicans. J. Bacteriol. 178: 2416-2419 https://doi.org/10.1128/jb.178.8.2416-2419.1996
  8. Munro, C. A., K. Winter, A. Buchan, and N. A. R. Gow. 2001. Chs 1 of Candida albicans is an essential chitin synthase required for synthesis of the septum and for cell integrity. Mol. Microbiol. 39: 1414-1426 https://doi.org/10.1046/j.1365-2958.2001.02347.x
  9. Munro. C. A. and N. A. R. Gow. 1995. Chitin biosynthesis as a target for antifungals, pp. 161- 171. In G K. Dixon, L. G Copping, and D. W. Hollomon (eds.), Antifungal Agents: Discovery and Mode of Action. Bios Scientific Publisher, Oxford, U.K
  10. Orlean, P. 1987. Two chitin synthases in Saccharomyces cerevisiae. J. Biol. Chem. 262: 5732-5739
  11. Choi, W. J. 1998. The determination of chitin synthases by varying pH and divalent cations in Candida albicans. J. Microbiol. Biotechnol. 8: 613-617
  12. Hwang, E. J., B. M. Kwon, S. H. Lee, N. R. Kim, J. H. Kang, Y. T. Kim, B. K. Park, and S. U. Kim. 2002. Obovatols, new chitin synthase 2 inhibitors of Saccharomyces cerevisiae from Magnolia obovata. J. Antimicrob. Chemother. 49: 95-101 https://doi.org/10.1093/jac/49.1.95
  13. Mcginnis, M. R. and M. G Rinaldi. 1986. Antifungal drugs: Mechanisms of action, drug resistance, susceptibility testing, and assays of activity in biological fluids, pp. 223-281. In L. Victor (ed.), Antibiotics in Laboratory Medicine, 2nd ed. Williams and Wilkins, Baltimore, U.S.A
  14. Locci, R. 1989. Streptomycetes and related genera, pp. 2451-2492. In S. J. Williams, M. E. Sharpe, and J. G. Holt (eds.), Bergey's Manual of Systematic Bacteriology, Vol. 4. Williams and Wilkins, Baltimore, U.S.A
  15. Daoud, N. N. and H. A. Foster. 1993. Antifungal activity of Myxococcus species. I Production, physicochemical and biological properties of antibiotics from Myxococcus fitlvus S 110 (Myxobacterales). Microbios 73: 173-18
  16. Iwai, Y., A. Hirano, J. Awaya, S. Matsuo, and S. Omura. 1978. 1,3-Diphenethylurea from Streptomyces sp. No. AM2498. J. Antibiot. 31: 375-376 https://doi.org/10.7164/antibiotics.31.375
  17. Park, K. S., K. C. Kang, J. H. Kim, D. J. Adams, J. N. Johng, and Y. K. Paik. 1999. Differential inhibitory effects of protoberberines on sterol and chitin biosyntheses in Candida albicans. J. Antimicrob. Chemother. 43: 667-674 https://doi.org/10.1093/jac/43.5.667
  18. Park, K. S., K. C. Kang, K. Y. Kim, P. Y. Jeong, J. H. Kim, D. J. Adams, J. H. Kim, and Y. K. Paik. 2001. HWY-289, a novel semi-synthetic protoberberine derivative with multiple target sites in Candida albicans. J. Antimicrob. Chemother. 47: 513-519 https://doi.org/10.1093/jac/47.5.513